SCL-WC: Cross-Slide Contrastive Learning for Weakly-Supervised Whole-Slide Image Classification

被引:0
|
作者
Wang, Xiyue [1 ,2 ]
Xiang, Jinxi [3 ]
Zhang, Jun [3 ]
Yang, Sen [3 ]
Yang, Zhongyi [3 ]
Wang, Minghui [1 ,2 ]
Zhang, Jing [1 ]
Yang, Wei [3 ]
Huang, Junzhou [3 ]
Han, Xiao [3 ]
机构
[1] Sichuan Univ, Coll Biomed Engn, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu 610065, Peoples R China
[3] Tencent AI Lab, Shenzhen 518057, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-supervised whole-slide image (WSI) classification (WSWC) is a challenging task where a large number of unlabeled patches (instances) exist within each WSI (bag) while only a slide label is given. Despite recent progress for the multiple instance learning (MIL)-based WSI analysis, the major limitation is that it usually focuses on the easy-to-distinguish diagnosis-positive regions while ignoring positives that occupy a small ratio in the entire WSI. To obtain more discriminative features, we propose a novel weakly-supervised classification method based on cross-slide contrastive learning (called SCL-WC), which depends on task-agnostic self-supervised feature pre-extraction and task-specific weakly-supervised feature refinement and aggregation for WSI-level prediction. To enable both intra-WSI and inter-WSI information interaction, we propose a positive-negative-aware module (PNM) and a weakly-supervised cross-slide contrastive learning (WSCL) module, respectively. The WSCL aims to pull WSIs with the same disease types closer and push different WSIs away. The PNM aims to facilitate the separation of tumor-like patches and normal ones within each WSI. Extensive experiments demonstrate state-of-the-art performance of our method in three different classification tasks (e.g., over 2% of AUC in Camelyon16, 5% of F1 score in BRACS, and 3% of AUC in DiagSet). Our method also shows superior flexibility and scalability in weakly-supervised localization and semi-supervised classification experiments (e.g., first place in the BRIGHT challenge). Our code will be available at https://github.com/Xiyue-Wang/SCL-WC.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] A generalized deep learning framework for whole-slide image segmentation and analysis
    Khened, Mahendra
    Kori, Avinash
    Rajkumar, Haran
    Krishnamurthi, Ganapathy
    Srinivasan, Balaji
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [42] SeLa-MIL: Developing an instance-level classifier via weakly-supervised self-training for whole slide image classification
    Ma, Yingfan
    Yuan, Mingzhi
    Shen, Ao
    Luo, Xiaoyuan
    An, Bohan
    Chen, Xinrong
    Wang, Manning
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 261
  • [43] A generalized deep learning framework for whole-slide image segmentation and analysis
    Mahendra Khened
    Avinash Kori
    Haran Rajkumar
    Ganapathy Krishnamurthi
    Balaji Srinivasan
    Scientific Reports, 11
  • [44] Multi-scale multi-instance contrastive learning for whole slide image classification
    Zhang, Jianan
    Hao, Fang
    Liu, Xueyu
    Yao, Shupei
    Wu, Yongfei
    Li, Ming
    Zheng, Wen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 138
  • [45] Rectified Cross-Entropy and Upper Transition Loss for Weakly Supervised Whole Slide Image Classifier
    Chen, Hanbo
    Han, Xiao
    Fan, Xinjuan
    Lou, Xiaoying
    Liu, Hailing
    Huang, Junzhou
    Yao, Jianhua
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT I, 2019, 11764 : 351 - 359
  • [46] A Weakly Supervised Deep Learning Framework for Whole Slide Classification to Facilitate Digital Pathology in Animal Study
    Bussola, Nicole
    Xu, Joshua
    Wu, Leihong
    Gorini, Lorenzo
    Zhang, Yifan
    Furlanello, Cesare
    Tong, Weida
    CHEMICAL RESEARCH IN TOXICOLOGY, 2023, 36 (08) : 1321 - 1331
  • [47] Weakly Supervised Learning for Poorly Differentiated Adenocarcinoma Classification in GastricEndoscopic Submucosal Dissection Whole Slide Images
    Tsuneki, Masayuki
    Kanavati, Fahdi
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2022, 21
  • [48] A pyramidal deep learning pipeline for kidney whole-slide histology images classification
    Abdeltawab, Hisham
    Khalifa, Fahmi
    Mohammed, Mohammed
    Cheng, Liang
    Gondim, Dibson
    El-Baz, Ayman
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [49] A pyramidal deep learning pipeline for kidney whole-slide histology images classification
    Hisham Abdeltawab
    Fahmi Khalifa
    Mohammed Ghazal
    Liang Cheng
    Dibson Gondim
    Ayman El-Baz
    Scientific Reports, 11
  • [50] Grading of Prostate Whole-slide Images Using Weak Self-supervised Learning
    Ghorbani, Amirata
    Esteva, Andre
    Zou, James
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 1439 - 1443