Pixel-associated autoencoder for hyperspectral anomaly detection

被引:9
|
作者
Xiang, Pei [1 ]
Ali, Shahzad [2 ]
Zhang, Jiajia [1 ,3 ]
Jung, Soon Ki [2 ]
Zhou, Huixin [1 ]
机构
[1] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
[2] Kyungpook Natl Univ, Sch Comp Sci & Engn, Daegu 41566, South Korea
[3] Univ Melbourne, Sch Math & Stat, Melbourne 3010, Australia
关键词
Anomaly detection; Autoencoder (AE); Hyperspectral image (HsI); Pixel similarity; Similarity metric; LOW-RANK; DECOMPOSITION; REPRESENTATION; DICTIONARY; GRAPH;
D O I
10.1016/j.jag.2024.103816
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Autoencoders (AEs) are central to hyperspectral anomaly detection, given their impressive efficacy. However, the current methodologies often neglect the global pixel similarity of the hyperspectral image (HsI), thereby limiting reconstruction accuracy. This study introduces an innovative pixel-associated AE approach that leverages pixel associations to augment hyperspectral anomaly detection. First, a dictionary construction methodology was introduced based on superpixel distance estimation to construct distinct dictionaries for background and local anomalies. Second, to recognize pixel similarities, the similarity metric of each pixel from the original HsI to the background dictionary and to the local anomaly dictionary was employed as the AE network input in lieu of the original HsI. Third, a dual hidden-layer feature similarity constraint network was proposed to enhance the reconstruction error of background and anomaly targets. Finally, the reconstruction error was utilized to score the anomaly target. The proposed method was benchmarked against other state-of-the-art techniques using synthetic and real HsI datasets to assess its effectiveness. The experimental results demonstrated the superior performance of the proposed method, outperforming the alternatives.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Subpixel-Pixel-Superpixel Guided Fusion for Hyperspectral Anomaly Detection
    Huang, Zhihong
    Fang, Leyuan
    Li, Shutao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (09): : 5998 - 6007
  • [32] RSAAE: Residual Self-Attention-Based Autoencoder for Hyperspectral Anomaly Detection
    Wang, Liguo
    Wang, Xiaoyi
    Vizziello, Anna
    Gamba, Paolo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [33] Hyperspectral Anomaly Detection Based on 3D Convolutional Autoencoder Network
    Wang Sheng-ming
    Wang Tao
    Tang Sheng-jin
    Su Yan-zhao
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42 (04) : 1270 - 1277
  • [34] Hyperspectral Pixel Unmixing With Latent Dirichlet Variational Autoencoder
    Mantripragada, Kiran
    Qureshi, Faisal Z.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 12
  • [35] Dictionary trained attention constrained low rank and sparse autoencoder for hyperspectral anomaly detection
    Hu, Xing
    Li, Zhixuan
    Luo, Lingkun
    Karimi, Hamid Reza
    Zhang, Dawei
    NEURAL NETWORKS, 2025, 181
  • [36] A SPARSE AUTOENCODER BASED HYPERSPECTRAL ANOMALY DETECTION ALGORIHTM USING RESIDUAL OF RECONSTRUCTION ERROR
    Chang, Shizhen
    Du, Bo
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 5488 - 5491
  • [37] Autoencoder and Adversarial-Learning-Based Semisupervised Background Estimation for Hyperspectral Anomaly Detection
    Xie, Weiying
    Liu, Baozhu
    Li, Yunsong
    Lei, Jie
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5416 - 5427
  • [38] Hyperspectral anomaly detection combining sparse constraint and feature extraction via stacked autoencoder
    Song S.
    Yang Y.
    Wang H.
    Wang X.
    Rong S.
    Zhou H.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2023, 52 (06): : 932 - 943
  • [39] Autoencoder for Network Anomaly Detection
    Park, Won
    Ferland, Nicolas
    Sun, Wenting
    2022 IEEE INTERNATIONAL SYMPOSIUM ON MEASUREMENTS & NETWORKING (M&N 2022), 2022,
  • [40] Unsupervised Pixel-Wise Hyperspectral Anomaly Detection via Autoencoding Adversarial Networks
    Arisoy, Sertac
    Nasrabadi, Nasser M.
    Kayabol, Koray
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19