Improving prediction of tacrolimus concentration using a combination of population pharmacokinetic modeling and machine learning in chinese renal transplant recipients

被引:1
|
作者
Wang, Yu-Ping [1 ]
Lu, Xiao-Ling [1 ]
Shao, Kun [2 ]
Shi, Hao-Qiang [1 ]
Zhou, Pei-Jun [2 ]
Chen, Bing [1 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Sch Med, Dept Pharm, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Ruijin Hosp, Ctr Organ Transplantat, Sch Med, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
renal transplant recipients; population pharmacokinetic; machine learning; XGBboost; tacrolimus; CYP3A5; GENOTYPE; GENETIC-POLYMORPHISM; BAYESIAN-ESTIMATION; CLINICAL FACTORS; EARLY PERIOD; EXPOSURE; OUTCOMES; IMPACT;
D O I
10.3389/fphar.2024.1389271
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims The population pharmacokinetic (PPK) model-based machine learning (ML) approach offers a novel perspective on individual concentration prediction. This study aimed to establish a PPK-based ML model for predicting tacrolimus (TAC) concentrations in Chinese renal transplant recipients.Methods Conventional TAC monitoring data from 127 Chinese renal transplant patients were divided into training (80%) and testing (20%) datasets. A PPK model was developed using the training group data. ML models were then established based on individual pharmacokinetic data derived from the PPK basic model. The prediction performances of the PPK-based ML model and Bayesian forecasting approach were compared using data from the test group.Results The final PPK model, incorporating hematocrit and CYP3A5 genotypes as covariates, was successfully established. Individual predictions of TAC using the PPK basic model, postoperative date, CYP3A5 genotype, and hematocrit showed improved rankings in ML model construction. XGBoost, based on the TAC PPK, exhibited the best prediction performance.Conclusion The PPK-based machine learning approach emerges as a superior option for predicting TAC concentrations in Chinese renal transplant recipients.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Exploring the comprehensive factors influencing tacrolimus pharmacokinetics in early renal transplant recipients: A population pharmacokinetic analysis
    Zhang, Yan
    Xue, Ling
    Hu, Linkun
    Wang, Liangliang
    Pan, Hao
    Lin, Yuxin
    Ding, Xiaoliang
    Huang, Yuhua
    Miao, Liyan
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2025, 81 (05) : 785 - 799
  • [22] A Prediction Model for Tacrolimus Daily Dose in Kidney Transplant Recipients With Machine Learning and Deep Learning Techniques
    Zhang, Qiwen
    Tian, Xueke
    Chen, Guang
    Yu, Ze
    Zhang, Xiaojian
    Lu, Jingli
    Zhang, Jinyuan
    Wang, Peile
    Hao, Xin
    Huang, Yining
    Wang, Zeyuan
    Gao, Fei
    Yang, Jing
    FRONTIERS IN MEDICINE, 2022, 9
  • [23] SOTRASTAURIN, A NOVEL PROTEIN KINASE C-INHIBITOR, IN COMBINATION WITH TACROLIMUS: PHARMACOKINETIC INTERACTION IN RENAL TRANSPLANT RECIPIENTS
    Steiger, J. U.
    Budde, K.
    Grinyo, J. M.
    Rostaing, L.
    Arns, W.
    Dantal, J.
    Slade, A.
    Barten, M. J.
    Kovarik, J. M.
    TRANSPLANT INTERNATIONAL, 2009, 22 : 116 - 116
  • [24] Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients
    Tang, Jie
    Liu, Rong
    Zhang, Yue-Li
    Liu, Mou-Ze
    Hu, Yong-Fang
    Shao, Ming-Jie
    Zhu, Li-Jun
    Xin, Hua-Wen
    Feng, Gui-Wen
    Shang, Wen-Jun
    Meng, Xiang-Guang
    Zhang, Li-Rong
    Ming, Ying-Zi
    Zhang, Wei
    SCIENTIFIC REPORTS, 2017, 7
  • [25] Application of Machine-Learning Models to Predict Tacrolimus Stable Dose in Renal Transplant Recipients
    Jie Tang
    Rong Liu
    Yue-Li Zhang
    Mou-Ze Liu
    Yong-Fang Hu
    Ming-Jie Shao
    Li-Jun Zhu
    Hua-Wen Xin
    Gui-Wen Feng
    Wen-Jun Shang
    Xiang-Guang Meng
    Li-Rong Zhang
    Ying-Zi Ming
    Wei Zhang
    Scientific Reports, 7
  • [26] Tacrolimus Starting Dose Prediction Based on Genetic Polymorphisms and Clinical Factors in Chinese Renal Transplant Recipients
    Wang, Peile
    Zhang, Qiwen
    Tian, Xueke
    Yang, Jing
    Zhang, Xiaojian
    GENETIC TESTING AND MOLECULAR BIOMARKERS, 2020, 24 (10) : 665 - 673
  • [27] Mortality Prediction In Heart Transplant Recipients Using Machine Learning Methods
    Carcamo, Francisco javier jimenez
    Rubens, Muni
    Saxena, Anshul
    Koerfer, Daniel
    Gonzalez, Pablo gordilo
    Ali, Shozab
    Vaidean, Georgetta
    Chaparro, Sandra
    Fontana, Marianna
    Kumar, Varun
    Sheridan, Paige
    Rubens, Lexie
    Toyip, Astra
    Boehme, Amelia
    Bender, Shaun
    Capocelli, Kelley
    Danese, David
    JOURNAL OF CARDIAC FAILURE, 2025, 31 (01)
  • [28] DETERMINATION OF OPTIMAL CHOLECALCIFEROL TREATMENT IN RENAL TRANSPLANT RECIPIENTS USING A POPULATION PHARMACOKINETIC APPROACH
    Benaboud, Sihem
    Urien, Saik
    Thervet, Eric
    Prie, Dominique
    Legendre, Christophe
    Souberbielle, Jean-Claude
    Hirt, Deborah
    Friedlander, Gerard
    Treluyer, Jean-Marc
    Courbebaisse, Marie
    TRANSPLANT INTERNATIONAL, 2012, 25 : 28 - 28
  • [29] Determination of optimal cholecalciferol treatment in renal transplant recipients using a population pharmacokinetic approach
    Benaboud, Sihem
    Urien, Saik
    Thervet, Eric
    Prie, Dominique
    Legendre, Christophe
    Souberbielle, Jean-Claude
    Hirt, Deborah
    Friedlander, Gerard
    Treluyer, Jean Marc
    Courbebaisse, Marie
    EUROPEAN JOURNAL OF CLINICAL PHARMACOLOGY, 2013, 69 (03) : 499 - 506
  • [30] Determination of optimal cholecalciferol treatment in renal transplant recipients using a population pharmacokinetic approach
    Sihem Benaboud
    Saïk Urien
    Eric Thervet
    Dominique Prié
    Christophe Legendre
    Jean-Claude Souberbielle
    Déborah Hirt
    Gérard Friedlander
    Jean Marc Treluyer
    Marie Courbebaisse
    European Journal of Clinical Pharmacology, 2013, 69 : 499 - 506