Foundation of the time-fractional beam equation

被引:0
|
作者
Loreti, Paola [1 ]
Sforza, Daniela [1 ]
机构
[1] Sapienza Univ Roma, Dipartimento Sci Base & Applicate Ingn, Via Antonio Scarpa 16, I-00161 Rome, Italy
关键词
Caputo fractional derivatives; Fractional diffusion-beam equations; Mittag-Leffler functions;
D O I
10.1016/j.aml.2024.109147
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive the model for fractional beam equations by making use of a modified constitutive assumption, that is the relationship between stress and strain depending on the creep compliance given by a fractional power -type function.
引用
收藏
页数:4
相关论文
共 50 条
  • [42] Numerical Methods for Solving the Time-fractional Telegraph Equation
    Wei, Leilei
    Liu, Lijie
    Sun, Huixia
    TAIWANESE JOURNAL OF MATHEMATICS, 2018, 22 (06): : 1509 - 1528
  • [43] An approximate analytical solution of time-fractional telegraph equation
    Das, S.
    Vishal, K.
    Gupta, P. K.
    Yildirim, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) : 7405 - 7411
  • [44] Boundary Integral Solution of the Time-Fractional Diffusion Equation
    J. Kemppainen
    K. Ruotsalainen
    Integral Equations and Operator Theory, 2009, 64 : 239 - 249
  • [45] Nonexistence results for a time-fractional biharmonic diffusion equation
    Jleli, Mohamed
    Samet, Bessem
    BOUNDARY VALUE PROBLEMS, 2024, 2024 (01):
  • [46] Reconstruction of pointwise sources in a time-fractional diffusion equation
    Hrizi, Mourad
    Hassine, Maatoug
    Novotny, Antonio Andre
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (01) : 193 - 219
  • [47] A Time-Fractional Schrodinger Equation with Singular Potentials on the Boundary
    Alazman, Ibtehal
    Jleli, Mohamed
    Samet, Bessem
    FRACTAL AND FRACTIONAL, 2023, 7 (06)
  • [48] Existence and uniqueness of the solution for a time-fractional diffusion equation
    J. Kemppainen
    Fractional Calculus and Applied Analysis, 2011, 14 : 411 - 417
  • [49] Robin coefficient identification for a time-fractional diffusion equation
    Wei, T.
    Zhang, Z. Q.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2016, 24 (04) : 647 - 666
  • [50] A Mollification Method for Backward Time-Fractional Heat Equation
    Nguyen Van Duc
    Pham Quy Muoi
    Nguyen Van Thang
    Acta Mathematica Vietnamica, 2020, 45 : 749 - 766