Communication-efficient and Scalable Decentralized Federated Edge Learning

被引:0
|
作者
Yapp, Austine Zong Han [1 ]
Koh, Hong Soo Nicholas [1 ]
Lai, Yan Ting [1 ]
Kang, Jiawen [1 ]
Li, Xuandi [1 ]
Ng, Jer Shyuan [2 ]
Jiang, Hongchao [2 ]
Lim, Wei Yang Bryan [2 ]
Xiong, Zehui [3 ]
Niyato, Dusit [1 ]
机构
[1] Nanyang Technol Univ NTU, Sch Comp Sci & Engn, Singapore, Singapore
[2] Nanyang Technol Univ, Alibaba NTU Singapore Joint Res Inst JRI, Singapore, Singapore
[3] Singapore Univ Technol & Design SUTD, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated Edge Learning (FEL) is a distributed Machine Learning (ML) framework for collaborative training on edge devices. FEL improves data privacy over traditional centralized ML model training by keeping data on the devices and only sending local model updates to a central coordinator for aggregation. However, challenges still remain in existing FEL architectures where there is high communication overhead between edge devices and the coordinator. In this paper, we present a working prototype of blockchain-empowered and communication-efficient FEL framework, which enhances the security and scalability towards large-scale implementation of FEL.
引用
收藏
页码:5032 / 5035
页数:4
相关论文
共 50 条
  • [41] Communication-efficient federated learning via knowledge distillation
    Wu, Chuhan
    Wu, Fangzhao
    Lyu, Lingjuan
    Huang, Yongfeng
    Xie, Xing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Communication-Efficient Federated Learning For Massive MIMO Systems
    Mu, Yuchen
    Garg, Navneet
    Ratnarajah, Tharmalingam
    2022 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2022, : 578 - 583
  • [43] On the Design of Communication-Efficient Federated Learning for Health Monitoring
    Chu, Dong
    Jaafar, Wael
    Yanikomeroglu, Halim
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 1128 - 1133
  • [44] FedHe: Heterogeneous Models and Communication-Efficient Federated Learning
    Chan, Yun Hin
    Ngai, Edith C. H.
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 207 - 214
  • [45] FedADP: Communication-Efficient by Model Pruning for Federated Learning
    Liu, Haiyang
    Shi, Yuliang
    Su, Zhiyuan
    Zhang, Kun
    Wang, Xinjun
    Yan, Zhongmin
    Kong, Fanyu
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 3093 - 3098
  • [46] Communication-Efficient Robust Federated Learning with Noisy Labels
    Li, Junyi
    Pei, Jian
    Huang, Heng
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 914 - 924
  • [47] Communication-Efficient Federated Learning With Data and Client Heterogeneity
    Zakerinia, Hossein
    Talaei, Shayan
    Nadiradze, Giorgi
    Alistarh, Dan
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [48] Communication-Efficient Federated Learning via Predictive Coding
    Yue, Kai
    Jin, Richeng
    Wong, Chau-Wai
    Dai, Huaiyu
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2022, 16 (03) : 369 - 380
  • [49] Communication-Efficient Wireless Traffic Prediction with Federated Learning
    Gao, Fuwei
    Zhang, Chuanting
    Qiao, Jingping
    Li, Kaiqiang
    Cao, Yi
    MATHEMATICS, 2024, 12 (16)
  • [50] Communication-Efficient Consensus Mechanism for Federated Reinforcement Learning
    Xu, Xing
    Li, Rongpeng
    Zhao, Zhifeng
    Zhang, Honggang
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 80 - 85