Performance Analysis of Federated Learning in Orbital Edge Computing

被引:1
|
作者
Jabbarpour, Mohammad Reza [1 ]
Javadi, Bahman [1 ]
Leong, Philip H. W. [2 ]
Calheiros, Rodrigo N. [1 ]
Boland, David [2 ]
Butler, Chris [3 ]
机构
[1] Western Sydney Univ, Sydney, NSW, Australia
[2] Univ Sydney, Sydney, NSW, Australia
[3] AUCloud, Melbourne, Vic, Australia
关键词
Low-Earth Orbit; Federated Learning; Orbital Edge Computing; Energy Consumption; Performance Analysis;
D O I
10.1145/3603166.3632140
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Federated Learning (FL) is a promising solution for collaborative machine learning while respecting data privacy and locality. FL has been used in Low Earth Orbit (LEO) satellite constellations for different space applications including earth observation, navigation, and positioning. Orbital Edge Computing (OEC) refers to the deployment of edge computing resources and data processing capabilities in space-based systems, enabling real-time data analysis and decision-making for remote and space-based applications. While there is existing research exploring the integration of federated learning in OEC, the influence of diverse factors such as space conditions, communication constraints, and machine learning models remains uncertain. This paper addresses this gap and presents a comprehensive performance analysis of FL methods in the unique and challenging setting of OEC. We consider model accuracy, training time, and power consumption as the performance metrics under different working conditions including IID and non-IID data distributions to analyse the performance of centralised and decentralised FL approaches. The experimental results demonstrate that although the asynchronous centralised FL method has high fluctuations in the accuracy curve, it is suitable for space applications in which power consumption and training time are two main factors. In addition, the number of sampled satellites for decentralised FL methods is an important parameter in non-IID data distribution. Moreover, increasing altitude can reduce the training time and increase the power consumption. This study enables us to highlight a number of performance challenges in OEC for further investigation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] CFLMEC: Cooperative Federated Learning for Mobile Edge Computing
    Wang, Xinghan
    Zhong, Xiaoxiong
    Yang, Yuanyuan
    Yang, Tingting
    Cheng, Nan
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2022), 2022, : 86 - 91
  • [22] Federated learning framework for mobile edge computing networks
    Fantacci, Romano
    Picano, Benedetta
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2020, 5 (01) : 15 - 21
  • [23] Federated learning based method for intelligent computing with privacy preserving in edge computing
    Liu Q.
    Xu X.
    Zhang X.
    Dou W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (09): : 2604 - 2610
  • [24] PASTEL: Privacy-Preserving Federated Learning in Edge Computing
    Elhattab, Fatima
    Bouchenak, Sara
    Boscher, Cedric
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2023, 7 (04):
  • [25] Federated Learning Assisted Intelligent IoV Mobile Edge Computing
    Quan, Haoyu
    Zhang, Qingmiao
    Zhao, Junhui
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2025, 9 (01): : 228 - 241
  • [26] Adaptive Clustered Federated Learning for Heterogeneous Data in Edge Computing
    Biyao Gong
    Tianzhang Xing
    Zhidan Liu
    Junfeng Wang
    Xiuya Liu
    Mobile Networks and Applications, 2022, 27 : 1520 - 1530
  • [27] Multicore Federated Learning for Mobile-Edge Computing Platforms
    Bai, Yang
    Chen, Lixing
    Li, Jianhua
    Wu, Jun
    Zhou, Pan
    Xu, Zichuan
    Xu, Jie
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (07): : 5940 - 5952
  • [28] Decentralized Federated Learning With Intermediate Results in Mobile Edge Computing
    Chen, Suo
    Xu, Yang
    Xu, Hongli
    Jiang, Zhida
    Qiao, Chunming
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2024, 23 (01) : 341 - 358
  • [29] Adaptive and Parallel Split Federated Learning in Vehicular Edge Computing
    Qiang, Xianke
    Chang, Zheng
    Hu, Yun
    Liu, Lei
    Hamalainen, Timo
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (05): : 4591 - 4604
  • [30] Adaptive Federated Learning in Resource Constrained Edge Computing Systems
    Wang, Shiqiang
    Tuor, Tiffany
    Salonidis, Theodoros
    Leung, Kin K.
    Makaya, Christian
    He, Ting
    Chan, Kevin
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2019, 37 (06) : 1205 - 1221