Self-Supervised Pretraining With Monocular Height Estimation for Semantic Segmentation

被引:1
|
作者
Xiong, Zhitong [1 ]
Chen, Sining [1 ]
Shi, Yilei [2 ]
Zhu, Xiao Xiang [1 ,3 ]
机构
[1] Tech Univ Munich TUM, Chair Data Sci Earth Observat, D-80333 Munich, Germany
[2] Tech Univ Munich TUM, Sch Engn & Design, D-80333 Munich, Germany
[3] Munich Ctr Machine Learning, Chair Data Sci Earth Observat, D-80333 Munich, Germany
关键词
Semantics; Task analysis; Estimation; Neurons; Semantic segmentation; Data models; Buildings; Foundation models; interpretable deep learning; monocular height estimation (MHE); self-supervised pretraining;
D O I
10.1109/TGRS.2024.3412629
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Monocular height estimation (MHE) is key for generating 3-D city models, essential for swift disaster response. Moving beyond the traditional focus on performance enhancement, our study breaks new ground by probing the interpretability of MHE networks. We have pioneeringly discovered that neurons within MHE models demonstrate selectivity for both height and semantic classes. This insight sheds light on the complex inner workings of MHE models and inspires innovative strategies for leveraging elevation data more effectively. Informed by this insight, we propose a pioneering framework that employs MHE as a self-supervised pretraining method for remote sensing (RS) imagery. This approach significantly enhances the performance of semantic segmentation tasks. Furthermore, we develop a disentangled latent transformer (DLT) module that leverages explainable deep representations from pretrained MHE networks for unsupervised semantic segmentation. Our method demonstrates the significant potential of MHE tasks in developing foundation models for sophisticated pixel-level semantic analyses. Additionally, we present a new dataset designed to benchmark the performance of both semantic segmentation and height estimation tasks. The dataset and code will be publicly available at https://github.com/zhu-xlab/DLT-MHE.pytorch.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Self-Supervised Learning of Object Parts for Semantic Segmentation
    Ziegler, Adrian
    Asano, Yuki M.
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14482 - 14491
  • [42] Self-Supervised Model Adaptation for Multimodal Semantic Segmentation
    Abhinav Valada
    Rohit Mohan
    Wolfram Burgard
    International Journal of Computer Vision, 2020, 128 : 1239 - 1285
  • [43] Weakly supervised semantic segmentation via self-supervised destruction learning
    Li, Jinlong
    Jie, Zequn
    Wang, Xu
    Zhou, Yu
    Ma, Lin
    Jiang, Jianmin
    NEUROCOMPUTING, 2023, 561
  • [44] Self-Supervised Difference Detection forWeakly-Supervised Semantic Segmentation
    Shimoda, Wataru
    Yanai, Keiji
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5207 - 5216
  • [45] Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
    Hoyer, Lukas
    Dai, Dengxin
    Wang, Qin
    Chen, Yuhua
    Van Gool, Luc
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (08) : 2070 - 2096
  • [46] Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised Depth Estimation
    Lukas Hoyer
    Dengxin Dai
    Qin Wang
    Yuhua Chen
    Luc Van Gool
    International Journal of Computer Vision, 2023, 131 : 2070 - 2096
  • [47] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Sun, Lin
    Li, Yi
    Liu, Bingzheng
    Xu, Liying
    Zhang, Zhe
    Zhu, Jie
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (29) : 42485 - 42495
  • [48] Transferring knowledge from monocular completion for self-supervised monocular depth estimation
    Lin Sun
    Yi Li
    Bingzheng Liu
    Liying Xu
    Zhe Zhang
    Jie Zhu
    Multimedia Tools and Applications, 2022, 81 : 42485 - 42495
  • [49] Monocular Depth Estimation via Self-Supervised Self-Distillation
    Hu, Haifeng
    Feng, Yuyang
    Li, Dapeng
    Zhang, Suofei
    Zhao, Haitao
    SENSORS, 2024, 24 (13)
  • [50] Masked autoencoder: influence of self-supervised pretraining on object segmentation in industrial images
    Anja Witte
    Sascha Lange
    Christian Lins
    Industrial Artificial Intelligence, 2 (1):