Texture and artifact decomposition for improving generalization in deep-learning-based deepfake detection

被引:6
|
作者
Gao, Jie [1 ,2 ]
Micheletto, Marco [2 ]
Orru, Giulia [2 ]
Concas, Sara [2 ]
Feng, Xiaoyi [1 ]
Marcialis, Gian Luca [2 ]
Roli, Fabio [2 ,3 ]
机构
[1] Northwestern Polytech Univ, 1 Dongxiang Rd, Xian 710129, Peoples R China
[2] Univ Cagliari, Via Marengo 3, I-09123 Cagliari, Italy
[3] Univ Genoa, Via Opera Pia 13, I-16145 Genoa, Italy
关键词
DeepFake detection; Generalization; Texture; Artifact; Ensemble learning strategy; FACE MANIPULATION;
D O I
10.1016/j.engappai.2024.108450
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The harmful utilization of DeepFake technology poses a significant threat to public welfare, precipitating a crisis in public opinion. Existing detection methodologies, predominantly relying on convolutional neural networks and deep learning paradigms, focus on achieving high in-domain recognition accuracy amidst many forgery techniques. However, overseeing the intricate interplay between textures and artifacts results in compromised performance across diverse forgery scenarios. This paper introduces a groundbreaking framework, denoted as Texture and Artifact Detector (TAD), to mitigate the challenge posed by the limited generalization ability stemming from the mutual neglect of textures and artifacts. Specifically, our approach delves into the similarities among disparate forged datasets, discerning synthetic content based on the consistency of textures and the presence of artifacts. Furthermore, we use a model ensemble learning strategy to judiciously aggregate texture disparities and artifact patterns inherent in various forgery types, thereby enabling the model's generalization ability. Our comprehensive experimental analysis, encompassing extensive intra-dataset and cross-dataset validations along with evaluations on both video sequences and individual frames, confirms the effectiveness of TAD. The results from four benchmark datasets highlight the significant impact of the synergistic consideration of texture and artifact information, leading to a marked improvement in detection capabilities.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Deep-Learning-Based Thickness Detection Method of Ice Covering
    Pi, Xinyu
    Zhang, Guoyong
    He, Lifu
    Feng, Wenqing
    Luo, Jing
    Ouyang, Yi
    2021 11TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS (ICPES 2021), 2021, : 526 - 530
  • [42] Analysis of ensemble-combination strategies for improving inter-database generalization of deep-learning-based automatic sleep staging
    Anido-Alonso, Adriana
    Alvarez-Estevez, Diego
    2022 IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI) JOINTLY ORGANISED WITH THE IEEE-EMBS INTERNATIONAL CONFERENCE ON WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS (BSN'22), 2022,
  • [43] A cascaded deep-learning-based model for face mask detection
    Kumar, Akhil
    DATA TECHNOLOGIES AND APPLICATIONS, 2023, 57 (01) : 84 - 107
  • [44] Deep-Learning-Based Bughole Detection for Concrete Surface Image
    Yao, Gang
    Wei, Fujia
    Yang, Yang
    Sun, Yujia
    ADVANCES IN CIVIL ENGINEERING, 2019, 2019
  • [45] A cascaded deep-learning-based model for face mask detection
    Kumar, Akhil
    DATA TECHNOLOGIES AND APPLICATIONS, 2022, : 1 - 24
  • [46] Annotated dataset for deep-learning-based bacterial colony detection
    László Makrai
    Bettina Fodróczy
    Sára Ágnes Nagy
    Péter Czeiszing
    István Csabai
    Géza Szita
    Norbert Solymosi
    Scientific Data, 10
  • [47] A Systematic Review on Deep-Learning-Based Phishing Email Detection
    Gray, L. Earl
    Conley, Justin M.
    Bursian, Steven J.
    Kamruzzaman, Abu
    Asif, Rameez
    ELECTRONICS, 2023, 12 (21)
  • [48] A Deep-learning-based Floor Detection System for the Visually Impaired
    Delahoz, Yueng
    Labrador, Miguel A.
    2017 IEEE 15TH INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, 15TH INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, 3RD INTL CONF ON BIG DATA INTELLIGENCE AND COMPUTING AND CYBER SCIENCE AND TECHNOLOGY CONGRESS(DASC/PICOM/DATACOM/CYBERSCI, 2017, : 883 - 888
  • [49] Deep-Learning-Based Network Intrusion Detection for SCADA Systems
    Yang, Huan
    Cheng, Liang
    Chuah, Mooi Choo
    2019 IEEE CONFERENCE ON COMMUNICATIONS AND NETWORK SECURITY (CNS), 2019,
  • [50] Learning Face Forgery Detection in Unseen Domain with Generalization Deepfake Detector
    Tran, Van-Nhan
    Lee, Suk-Hwan
    Le, Hoanh-Su
    Kim, Bo-Sung
    Kwon, Ki-Ryong
    2023 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS, ICCE, 2023,