A Non-parametric Graph Clustering Framework for Multi-View Data

被引:11
|
作者
Yu, Shengju [1 ]
Wang, Siwei [2 ]
Dong, Zhibin [1 ]
Tu, Wenxuan [1 ]
Liu, Suyuan [1 ]
Lv, Zhao [2 ]
Li, Pan [2 ]
Wang, Miao [2 ]
Zhu, En [1 ]
机构
[1] Natl Univ Def Technol, Sch Comp, Changsha 410073, Peoples R China
[2] Intelligent Game & Decis Lab, Beijing 100071, Peoples R China
来源
THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15 | 2024年
基金
中国国家自然科学基金;
关键词
D O I
10.1609/aaai.v38i15.29594
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-view graph clustering (MVGC) derives encouraging grouping results by seamlessly integrating abundant information inside heterogeneous data, and has captured surging focus recently. Nevertheless, the majority of current MVGC works involve at least one hyper-parameter, which not only requires additional efforts for tuning, but also leads to a complicated solving procedure, largely harming the flexibility and scalability of corresponding algorithms. To this end, in the article we are devoted to getting rid of hyper-parameters, and devise a non-parametric graph clustering (NpGC) framework to more practically partition multi-view data. To be specific, we hold that hyper-parameters play a role in balancing error item and regularization item so as to form high-quality clustering representations. Therefore, under without the assistance of hyper-parameters, how to acquire high-quality representations becomes the key. Inspired by this, we adopt two types of anchors, view-related and view-unrelated, to concurrently mine exclusive characteristics and common characteristics among views. Then, all anchors' information is gathered together via a consensus bipartite graph. By such ways, NpGC extracts both complementary and consistent multiview features, thereby obtaining superior clustering results. Also, linear complexities enable it to handle datasets with over 120000 samples. Numerous experiments reveal NpGC's strong points compared to lots of classical approaches.
引用
收藏
页码:16558 / 16567
页数:10
相关论文
共 50 条
  • [41] Deep Multi-view Clustering Based on Graph Embedding
    Zhang, Chen
    Zhou, Weidong
    Zhou, Jin
    Wang, Yingxu
    Han, Shiyuan
    Du, Tao
    Yang, Cheng
    Liu, Bowen
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, ICIC 2023, PT I, 2023, 14086 : 715 - 726
  • [42] Multi-view subspace clustering with incomplete graph information
    He, Xiaxia
    Wang, Boyue
    Luo, Cuicui
    Gao, Junbin
    Hu, Yongli
    Yin, Baocai
    IET COMPUTER VISION, 2022,
  • [43] Consistent Multiple Graph Embedding for Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 1008 - 1018
  • [44] Multi-View Graph Clustering by Adaptive Manifold Learning
    Zhao, Peng
    Wu, Hongjie
    Huang, Shudong
    MATHEMATICS, 2022, 10 (11)
  • [45] Multi-view clustering with graph regularized optimal transport
    Yao, Jie
    Lin, Renjie
    Lin, Zhenghong
    Wang, Shiping
    INFORMATION SCIENCES, 2022, 612 : 563 - 575
  • [46] Efficient Anchor Graph Factorization for Multi-View Clustering
    Li, Jing
    Wang, Qianqian
    Yang, Ming
    Gao, Quanxue
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 5834 - 5845
  • [47] Contrastive Consensus Graph Learning for Multi-View Clustering
    Wang, Shiping
    Lin, Xincan
    Fang, Zihan
    Du, Shide
    Xiao, Guobao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (11) : 2027 - 2030
  • [48] Bayesian Non-Parametric Clustering of Ranking Data
    Meila, Marina
    Chen, Harr
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (11) : 2156 - 2169
  • [49] Robust Joint Graph Learning for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 722 - 734
  • [50] Multi-view Clustering with Graph Embedding for Connectome Analysis
    Ma, Guixiang
    He, Lifang
    Lu, Chun-Ta
    Shao, Weixiang
    Yu, Philip S.
    Leow, Alex D.
    Ragin, Ann B.
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 127 - 136