Integrative polygenic risk score improves the prediction accuracy of complex traits and diseases

被引:12
|
作者
Truong, Buu [1 ,2 ,3 ]
Hull, Leland E. [4 ,5 ]
Ruan, Yunfeng [1 ,2 ,3 ]
Huang, Qin Qin [6 ]
Hornsby, Whitney [1 ,2 ,3 ]
Martin, Hilary [6 ]
van Heel, David A. [7 ]
Wang, Ying [1 ,8 ,9 ]
Martin, Alicia R. [8 ,9 ]
Lee, S. Hong [10 ]
Natarajan, Pradeep [1 ,2 ,3 ,5 ]
机构
[1] Broad Inst MIT & Harvard, Program Med & Populat Genet & Cardiovasc Dis Initi, 415 Main St, Cambridge, MA 02142 USA
[2] Massachusetts Gen Hosp, Ctr Genom Med, 185 Cambridge St, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Cardiovasc Res Ctr, 185 Cambridge St, Boston, MA USA
[4] Massachusetts Gen Hosp, Div Gen Internal Med, 100 Cambridge St, Boston, MA 02114 USA
[5] Harvard Med Sch, Dept Med, 25 Shattuck St, Boston, MA 02115 USA
[6] Wellcome Trust Sanger Inst, Dept Human Genet, Cambridge, England
[7] Queen Mary Univ London, Blizard Inst, Barts & London Sch Med & Dent, London, England
[8] Broad Inst Harvard & MIT, Stanley Ctr Psychiat Res, Cambridge, MA USA
[9] Massachusetts Gen Hosp, Analyt & Translat Genet Unit, Boston, MA USA
[10] Univ South Australia Canc Res Inst, Univ South Australia, Australian Ctr Precis Hlth, Adelaide, SA 5000, Australia
来源
CELL GENOMICS | 2024年 / 4卷 / 04期
基金
美国国家卫生研究院;
关键词
CORONARY-ARTERY-DISEASE; REGULARIZATION;
D O I
10.1016/j.xgen.2024.100523
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Polygenic risk scores (PRSs) are an emerging tool to predict the clinical phenotypes and outcomes of individuals. We propose PRSmix, a framework that leverages the PRS corpus of a target trait to improve prediction accuracy, and PRSmix+, which incorporates genetically correlated traits to better capture the human genetic architecture for 47 and 32 diseases/traits in European and South Asian ancestries, respectively. PRSmix demonstrated a mean prediction accuracy improvement of 1.20 -fold (95% confidence interval [CI], [1.10; 1.3]; p = 9.17 x 10 - 5 ) and 1.19 -fold (95% CI, [1.11; 1.27]; p = 1.92 x 10 - 6 ), and PRSmix+ improved the prediction accuracy by 1.72 -fold (95% CI, [1.40; 2.04]; p = 7.58 x 10 - 6 ) and 1.42 -fold (95% CI, [1.25; 1.59]; p = 8.01 x 10 - 7 ) in European and South Asian ancestries, respectively. Compared to the previously cross -trait -combination methods with scores from pre -defined correlated traits, we demonstrated that our method improved prediction accuracy for coronary artery disease up to 3.27 -fold (95% CI, [2.1; 4.44]; p value after false discovery rate (FDR) correction = 2.6 x 10 - 4 ). Our method provides a comprehensive framework to benchmark and leverage the combined power of PRS for maximal performance in a desired target population.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease
    Patel, Aniruddh P.
    Wang, Minxian
    Ruan, Yunfeng
    Koyama, Satoshi
    Clarke, Shoa L.
    Yang, Xiong
    Tcheandjieu, Catherine
    Agrawal, Saaket
    Fahed, Akl C.
    Ellinor, Patrick T.
    Tsao, Philip
    Sun, Yan, V
    Cho, Kelly
    Wilson, Peter W. F. L.
    Assimes, Themistocles L.
    van Heel, David A.
    Butterworth, Adam S.
    Aragam, Krishna G.
    Natarajan, Pradeep
    Khera, Amit V.
    NATURE MEDICINE, 2023, 29 (07) : 1793 - +
  • [22] A multi-ancestry polygenic risk score improves risk prediction for coronary artery disease
    Aniruddh P. Patel
    Minxian Wang
    Yunfeng Ruan
    Satoshi Koyama
    Shoa L. Clarke
    Xiong Yang
    Catherine Tcheandjieu
    Saaket Agrawal
    Akl C. Fahed
    Patrick T. Ellinor
    Philip S. Tsao
    Yan V. Sun
    Kelly Cho
    Peter W. F. Wilson
    Themistocles L. Assimes
    David A. van Heel
    Adam S. Butterworth
    Krishna G. Aragam
    Pradeep Natarajan
    Amit V. Khera
    Nature Medicine, 2023, 29 (7) : 1793 - 1803
  • [23] A polygenic risk score improves the prediction of cardiovascular risk associated with obstructive sleep-apnoea
    Thorball, Christian
    Berger, Mathieu
    Solelhac, Geoffroy
    Waeber, Adrien
    Redin, Claire
    Marques-Vidal, Pedro
    Vollenweider, Peter
    Fellay, Jacques
    Heinzer, Raphael
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 145 - 146
  • [24] Polygenic risk score for alcohol drinking behavior improves prediction of inflammatory bowel disease risk
    Di Narzo, Antonio F.
    Hart, Amy
    Kosoy, Roman
    Peters, Lauren
    Stojmirovic, Aleksandar
    Cheng, Haoxiang
    Zhang, Zhongyang
    Shan, Mingxu
    Cho, Judy
    Kasarskis, Andrew
    Argmann, Carmen
    Peter, Inga
    Schadt, Eric E.
    Hao, Ke
    HUMAN MOLECULAR GENETICS, 2021, 30 (06) : 514 - 523
  • [25] The omnigenic model and polygenic prediction of complex traits
    Mathieson, Iain
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (09) : 1558 - 1563
  • [26] Polygenic power calculator: Statistical power and polygenic prediction accuracy of genome-wide association studies of complex traits
    Wu, Tian
    Liu, Zipeng
    Mak, Timothy Shin Heng
    Sham, Pak Chung
    FRONTIERS IN GENETICS, 2022, 13
  • [27] Polygenic Risk Score: An Application to the Prediction of Asthma Risk
    Ricard, Jasmin
    Li, Zhonglin
    Theriault, Sebastien
    Bosse, Yohan
    Eslami, Aida
    GENETIC EPIDEMIOLOGY, 2021, 45 (07) : 785 - 785
  • [28] A Polygenic Risk Score for Prostate Cancer Risk Prediction
    Schaffer, Kerry R.
    Shi, Mingjian
    Shelley, John P.
    Tosoian, Jeffrey J.
    Kachuri, Linda
    Witte, John S.
    Mosley, Jonathan D.
    JAMA INTERNAL MEDICINE, 2023, 183 (04) : 386 - 388
  • [29] A polygenic risk score for multiple myeloma risk prediction
    Canzian, Federico
    Piredda, Chiara
    Macauda, Angelica
    Zawirska, Daria
    Andersen, Niels Frost
    Nagler, Arnon
    Zaucha, Jan Maciej
    Mazur, Grzegorz
    Dumontet, Charles
    Watek, Marzena
    Jamroziak, Krzysztof
    Sainz, Juan
    Varkonyi, Judit
    Butrym, Aleksandra
    Beider, Katia
    Abildgaard, Niels
    Lesueur, Fabienne
    Dudzinski, Marek
    Vangsted, Annette Juul
    Pelosini, Matteo
    Subocz, Edyta
    Petrini, Mario
    Buda, Gabriele
    Razny, Malgorzata
    Gemignani, Federica
    Marques, Herlander
    Orciuolo, Enrico
    Kadar, Katalin
    Jurczyszyn, Artur
    Druzd-Sitek, Agnieszka
    Vogel, Ulla
    Andersen, Vibeke
    Reis, Rui Manuel
    Suska, Anna
    Avet-Loiseau, Herve
    Kruszewski, Marcin
    Tomczak, Waldemar
    Rymko, Marcin
    Minvielle, Stephane
    Campa, Daniele
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2022, 30 (04) : 474 - 479
  • [30] A polygenic risk score for multiple myeloma risk prediction
    Federico Canzian
    Chiara Piredda
    Angelica Macauda
    Daria Zawirska
    Niels Frost Andersen
    Arnon Nagler
    Jan Maciej Zaucha
    Grzegorz Mazur
    Charles Dumontet
    Marzena Wątek
    Krzysztof Jamroziak
    Juan Sainz
    Judit Várkonyi
    Aleksandra Butrym
    Katia Beider
    Niels Abildgaard
    Fabienne Lesueur
    Marek Dudziński
    Annette Juul Vangsted
    Matteo Pelosini
    Edyta Subocz
    Mario Petrini
    Gabriele Buda
    Małgorzata Raźny
    Federica Gemignani
    Herlander Marques
    Enrico Orciuolo
    Katalin Kadar
    Artur Jurczyszyn
    Agnieszka Druzd-Sitek
    Ulla Vogel
    Vibeke Andersen
    Rui Manuel Reis
    Anna Suska
    Hervé Avet-Loiseau
    Marcin Kruszewski
    Waldemar Tomczak
    Marcin Rymko
    Stephane Minvielle
    Daniele Campa
    European Journal of Human Genetics, 2022, 30 : 474 - 479