STSD:A large-scale benchmark for semantic segmentation of subway tunnel point cloud

被引:4
|
作者
Cui, Hao [1 ,2 ]
Li, Jian [1 ,2 ]
Mao, Qingzhou [3 ]
Hu, Qingwu [3 ]
Dong, Cuijun [3 ]
Tao, Yiwen [4 ]
机构
[1] Zhengzhou Univ, Sch Geosci & Technol, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Archaeol Innovat Ctr, Zhengzhou, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan, Peoples R China
[4] Zhengzhou Univ, Sch Math & Stat, Zhengzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Subway tunnel; Semantic segmentation; Deep learning dataset; Point cloud; Mobile laser scanning; IMAGE; DEFECTS;
D O I
10.1016/j.tust.2024.105829
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Deep learning (DL) semantic segmentation of tunnel point cloud shows an efficient path for applications related to subway tunnel scenes, such as health inspection and building information modelling (BIM). Current methods for tunnel point cloud segmentation often suffer from a shortage of benchmarks. This paper proposed a largescale, multi-modal dataset for semantic segmentation of subway tunnel point cloud called subway tunnel segmentation dataset (STSD). The STSD comprises point clouds and projected images annotated into 12 categories, encompassing three types of subway tunnels with a combined length exceeding 2700 m, totaling over 2.26 billion points. A novel approach for DL semantic segmentation of subway tunnel point clouds is proposed herein. This approach enables the direct utilization of image-based DL segmentation networks on subway tunnel point clouds. Furthermore, it incorporates a lossless coordinate transformation method capable of converting tunnel point clouds of any cross-section shape into images with minimal information loss. Further evaluation of several classic or state-of-the-art 2D and 3D DL semantic segmentation models shows the feasibility of the approach and dataset. The best 2D model achieves a mIoU of 86.26% and outperforms the best 3D model by almost 10%. This research provides a novel approach for DL semantic segmentation in subway tunnel point clouds, contributes a large-scale, multi-modal dataset for the tunnel semantic segmentation, and creates a benchmark for further evaluation of the corresponding algorithms.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation
    Zhang, Yachao
    Qu, Yanyun
    Xie, Yuan
    Li, Zonghao
    Zheng, Shanshan
    Li, Cuihua
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15500 - 15508
  • [22] Semantic segmentation of large-scale point clouds with neighborhood uncertainty
    Bao, Yong
    Wen, Haibiao
    Zhang, Baoqing
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (21) : 60949 - 60964
  • [23] 3D semantic segmentation using deep learning for large-scale indoor point cloud
    Chen Hui
    Xu Peng
    Zuo Yipeng
    Wang Weina
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1650 - 1655
  • [24] A large-scale point cloud semantic segmentation network via local dual features and global correlations
    Zhao, Yiqiang
    Ma, Xingyi
    Hu, Bin
    Zhang, Qi
    Ye, Mao
    Zhou, Guoqing
    COMPUTERS & GRAPHICS-UK, 2023, 111 : 133 - 144
  • [25] Multistage Scene-Level Constraints for Large-Scale Point Cloud Weakly Supervised Semantic Segmentation
    Su, Yanfei
    Cheng, Ming
    Yuan, Zhimin
    Liu, Weiquan
    Zeng, Wankang
    Wang, Cheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [26] LessNet: Lightweight and efficient semantic segmentation for large-scale point clouds
    Feng, Guoqiang
    Li, Weilong
    Zhao, Xiaolin
    Yang, Xuemeng
    Kong, Xin
    Huang, TianXin
    Cui, Jinhao
    IET CYBER-SYSTEMS AND ROBOTICS, 2022, 4 (02) : 107 - 115
  • [27] BushNet: Effective semantic segmentation of bush in large-scale point clouds
    Wei, Hejun
    Xu, Enyong
    Zhang, Jinlai
    Meng, Yanmei
    Wei, Jin
    Dong, Zhen
    Li, Zhengqiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2022, 193
  • [28] GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds
    Zhang, Min
    Kadam, Pranav
    Liu, Shan
    Kuo, C. -C. Jay
    PATTERN RECOGNITION LETTERS, 2022, 164 : 9 - 15
  • [29] Learning Semantic Segmentation of Large-Scale Point Clouds With Random Sampling
    Hu, Qingyong
    Yang, Bo
    Xie, Linhai
    Rosa, Stefano
    Guo, Yulan
    Wang, Zhihua
    Trigoni, Niki
    Markham, Andrew
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (11) : 8338 - 8354
  • [30] Continuous Mapping Convolution for Large-Scale Point Clouds Semantic Segmentation
    Yan, Kunping
    Hu, Qingyong
    Wang, Hanyun
    Huang, Xiaohong
    Li, Li
    Ji, Song
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19