Hierarchical nucleation in deep neural networks

被引:0
|
作者
Doimo, Diego [1 ]
Glielmo, Aldo [1 ]
Ansuini, Alessio [2 ]
Laio, Alessandro [1 ]
机构
[1] Scuola Int Super Studi Avanzati, Trieste, Italy
[2] Area Sci Pk, Trieste, Italy
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020 | 2020年 / 33卷
关键词
CRITERIA;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep convolutional networks (DCNs) learn meaningful representations where data that share the same abstract characteristics are positioned closer and closer. Understanding these representations and how they are generated is of unquestioned practical and theoretical interest. In this work we study the evolution of the probability density of the ImageNet dataset across the hidden layers in some state-of-the-art DCNs. We find that the initial layers generate a unimodal probability density getting rid of any structure irrelevant for classification. In subsequent layers density peaks arise in a hierarchical fashion that mirrors the semantic hierarchy of the concepts. Density peaks corresponding to single categories appear only close to the output and via a very sharp transition which resembles the nucleation process of a heterogeneous liquid. This process leaves a footprint in the probability density of the output layer where the topography of the peaks allows reconstructing the semantic relationships of the categories.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] TANDEM-Bottleneck Feature Combination using Hierarchical Deep Neural Networks
    Ravanelli, Mirco
    Van Hai Do
    Janin, Adam
    2014 9TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2014, : 113 - +
  • [42] Dynamics of hierarchical neural networks
    Marc-Thorsten Hütt
    Mark Müller-Linow
    Claus C Hilgetag
    BMC Neuroscience, 10 (Suppl 1)
  • [43] Dynamics of Hierarchical Neural Networks
    Hilgetag, Claus C.
    Mueller-Linow, Mark
    Huett, Marc-Thorsten
    ADVANCES IN COGNITIVE NEURODYNAMICS (II), 2011, : 215 - 219
  • [44] Hierarchical evolution of neural networks
    Moriarty, DE
    Miikkulainen, R
    1998 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION - PROCEEDINGS, 1998, : 428 - 433
  • [45] Filter Pruning using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks
    Mitsuno, Kakeru
    Kurita, Takio
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 1089 - 1095
  • [47] Hierarchical deployment of deep neural networks based on fog computing inferred acceleration model
    Jiang, Weijin
    Lv, Sijian
    Cluster Computing, 2021, 24 (04) : 2807 - 2817
  • [48] Hierarchical deployment of deep neural networks based on fog computing inferred acceleration model
    Jiang, Weijin
    Lv, Sijian
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2021, 24 (04): : 2807 - 2817
  • [49] Real-Time Object Navigation With Deep Neural Networks and Hierarchical Reinforcement Learning
    Staroverov, Aleksey
    Yudin, Dmitry A.
    Belkin, Ilya
    Adeshkin, Vasily
    Solomentsev, Yaroslav K.
    Panov, Aleksandr I.
    IEEE ACCESS, 2020, 8 : 195608 - 195621
  • [50] Efficient adaptive inference for deep convolutional neural networks using hierarchical early exits
    Passalis, Nikolaos
    Raitoharju, Jenni
    Tefas, Anastasios
    Gabbouj, Moncef
    PATTERN RECOGNITION, 2020, 105