Cross-Modal and Uni-Modal Soft-Label Alignment for Image-Text Retrieval

被引:0
|
作者
Huang, Hailang [1 ]
Nie, Zhijie [1 ,2 ]
Wang, Ziqiao [3 ]
Shang, Ziyu [4 ]
机构
[1] Beihang Univ, Sch Comp Sci & Engn, SKLSDE, Beijing, Peoples R China
[2] Beihang Univ, Shen Yuan Honors Coll, Beijing, Peoples R China
[3] Univ Ottawa, Sch Elect Engn & Comp Sci, Ottawa, ON, Canada
[4] Southeast Univ, Sch Comp Sci & Engn, Nanjing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current image-text retrieval methods have demonstrated impressive performance in recent years. However, they still face two problems: the inter-modal matching missing problem and the intra-modal semantic loss problem. These problems can significantly affect the accuracy of image-text retrieval. To address these challenges, we propose a novel method called Cross-modal and Uni-modal Soft-label Alignment (CUSA). Our method leverages the power of uni-modal pre-trained models to provide soft-label supervision signals for the image-text retrieval model. Additionally, we introduce two alignment techniques, Cross-modal Soft-label Alignment (CSA) and Uni-modal Soft-label Alignment (USA), to overcome false negatives and enhance similarity recognition between uni-modal samples. Our method is designed to be plugand-play, meaning it can be easily applied to existing imagetext retrieval models without changing their original architectures. Extensive experiments on various image-text retrieval models and datasets, we demonstrate that our method can consistently improve the performance of image-text retrieval and achieve new state-of-the-art results. Furthermore, our method can also boost the uni-modal retrieval performance of image-text retrieval models, enabling it to achieve universal retrieval. The code and supplementary files can be found at https://github.com/lerogo/aaai24 itr cusa.
引用
收藏
页码:18298 / 18306
页数:9
相关论文
共 50 条
  • [21] Cross-modal Contrastive Learning for Generalizable and Efficient Image-text Retrieval
    Lu, Haoyu
    Huo, Yuqi
    Ding, Mingyu
    Fei, Nanyi
    Lu, Zhiwu
    MACHINE INTELLIGENCE RESEARCH, 2023, 20 (04) : 569 - 582
  • [22] Webly Supervised Joint Embedding for Cross-Modal Image-Text Retrieval
    Mithun, Niluthpol Chowdhury
    Panda, Rameswar
    Papalexakis, Evangelos E.
    Roy-Chowdhury, Amit K.
    PROCEEDINGS OF THE 2018 ACM MULTIMEDIA CONFERENCE (MM'18), 2018, : 1856 - 1864
  • [23] SAM: cross-modal semantic alignments module for image-text retrieval
    Pilseo Park
    Soojin Jang
    Yunsung Cho
    Youngbin Kim
    Multimedia Tools and Applications, 2024, 83 : 12363 - 12377
  • [24] Cross-modal Contrastive Learning for Generalizable and Efficient Image-text Retrieval
    Haoyu Lu
    Yuqi Huo
    Mingyu Ding
    Nanyi Fei
    Zhiwu Lu
    Machine Intelligence Research, 2023, 20 : 569 - 582
  • [25] Global-Local Information Soft-Alignment for Cross-Modal Remote-Sensing Image-Text Retrieval
    Hu, Gang
    Wen, Zaidao
    Lv, Yafei
    Zhang, Jianting
    Wu, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [26] SAM: cross-modal semantic alignments module for image-text retrieval
    Park, Pilseo
    Jang, Soojin
    Cho, Yunsung
    Kim, Youngbin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (04) : 12363 - 12377
  • [27] Learning Hierarchical Semantic Correspondences for Cross-Modal Image-Text Retrieval
    Zeng, Sheng
    Liu, Changhong
    Zhou, Jun
    Chen, Yong
    Jiang, Aiwen
    Li, Hanxi
    PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2022, 2022, : 239 - 248
  • [28] An Enhanced Feature Extraction Framework for Cross-Modal Image-Text Retrieval
    Zhang, Jinzhi
    Wang, Luyao
    Zheng, Fuzhong
    Wang, Xu
    Zhang, Haisu
    REMOTE SENSING, 2024, 16 (12)
  • [29] Image-text bidirectional learning network based cross-modal retrieval
    Li, Zhuoyi
    Lu, Huibin
    Fu, Hao
    Gu, Guanghua
    NEUROCOMPUTING, 2022, 483 : 148 - 159
  • [30] RICH: A rapid method for image-text cross-modal hash retrieval
    Li, Bo
    Yao, Dan
    Li, Zhixin
    DISPLAYS, 2023, 79