3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery

被引:2
|
作者
Xiang, Hengying [1 ,2 ]
Deng, Nanping [1 ,2 ]
Gao, Lu [1 ,2 ]
Yu, Wen [1 ,2 ]
Cheng, Bowen [1 ,2 ]
Kang, Weimin [1 ,2 ]
机构
[1] Tiangong Univ, State Key Lab Separat Membranes & Membrane Proc, Tianjin 300387, Peoples R China
[2] Tiangong Univ, Sch Text Sci & Engn, Tianjin 300387, Peoples R China
关键词
Composite polymer electrolytes; Core -shell structured nanofiber; All -solid-state lithium metal batteries; Outstanding thermal stability and; electrochemical performance; Li(6.4)La(3)Zr(1.4)Ta(0.6)O(12)ceramic nanoparticle; ION;
D O I
10.1016/j.cclet.2023.109182
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Satisfactory ionic conductivity, excellent mechanical stability, and high-temperature resistance are the prerequisites for the safe application of solid polymer electrolytes (SPEs) in all-solid-state lithium metal batteries (ASSLMBs). In this study, a novel poly-m-phenyleneisophthalamide (PMIA)-core/poly(ethylene oxide) (PEO)-shell nanofiber membrane and the functional Li6.4La3Zr1.4Ta0.6O12 (LLZTO) ceramic nanoparticle are simultaneously introduced into the PEO-based SPEs to prepare composite polymer electrolytes (CPEs). The core PMIA layer of composite nanofibers can greatly improve the mechanical strength and thermal stability of the CPEs, while the shell PEO layer can provide the 3D continuous transport channels for lithium ions. In addition, the introduction of functional LLZTO nanoparticle not only reduces the crystallinity of PEO, but also promotes the dissociation of lithium salts and releases more Li+ ions through its interaction with the Lewis acid-base of anions, thereby overall improving the transport of lithium ions. Consequently, the optimized CPEs present high ionic conductivity of 1.38x10(-4) S/cm at 30 degrees C, significantly improved mechanical strength (8.5 MPa), remarkable thermal stability (without obvious shrinkage at 150 degrees C), and conspicuous Li dendrites blocking ability (>1800 h). The CPEs also both have good compatibility and cyclic stability with LiFePO4 (>2000 cycles) and high-voltage LiNi0.8Mn0.1Co0.1O2 (NMC811) (>500 cycles) cathodes. In addition, even at low temperature (40 degrees C), the assembled LiFePO4/CPEs/Li battery still can cycle stably. The novel design can provide an effective way to exploit high-performance solid-state electrolytes.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    Energy Storage Materials, 2024, 65
  • [22] High-performance lithium metal batteries based on composite solid-state electrolytes with high ceramic content
    Zhang, Xiaoyu
    Wang, Jinhuan
    Hu, Dongqi
    Du, Wei
    Hou, Chuanxin
    Jiang, Huiyu
    Wei, Yuting
    Liu, Xiao
    Jiang, Fuyi
    Sun, Jianchao
    Yuan, Hua
    Huang, Xiaoyu
    ENERGY STORAGE MATERIALS, 2024, 65
  • [23] Metal Organic Framework Nanorod Doped Solid Polymer Electrolyte with Decreased Crystallinity for High-Performance All-Solid-State Lithium Batteries
    Zhang, Zheng
    You, Jin-Hai
    Zhang, Shao-Jian
    Wang, Chuan-Wei
    Zhou, Yao
    Li, Jun-Tao
    Huang, Ling
    Sun, Shi-Gang
    CHEMELECTROCHEM, 2020, 7 (05) : 1125 - 1134
  • [24] PEO/PVDF-HFP/LLZTO Composite Solid Polymer Electrolyte for High-Performance All-Solid-State Lithium Metal Batteries
    Gan, Huihui
    Sun, Jiajun
    Xia, Ye
    Qiu, Pengyuan
    Li, Liang
    Zhu, Wen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (43): : 21015 - 21021
  • [25] Thin Polymer Electrolytes with 3D Nanofiber Skeletons Enabling High-Performance Solid-State Lithium Metal Batteries
    Liu, Lehao
    Xu, Rubing
    Tu, Jiaxin
    Zhou, Rongmin
    Mo, Jinshan
    Yang, Tianrong
    Zhao, Qian
    Zhang, Mengxuan
    Zhang, Dongmei
    Li, Meicheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (13): : 6138 - 6147
  • [26] Coaxial Nanofiber Binders Integrating Thin and Robust Sulfide Solid Electrolytes for High-Performance All-Solid-State Lithium Battery
    Su, Zhengkang
    Li, Guang
    Zhang, Jingjing
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (07)
  • [27] Scalable, thin asymmetric composite solid electrolyte for high-performance all-solid-state lithium metal batteries
    Wang, Guoxu
    Liang, Yuhao
    Liu, Hong
    Wang, Chao
    Li, Dabing
    Fan, Li-Zhen
    INTERDISCIPLINARY MATERIALS, 2022, 1 (03): : 434 - 444
  • [28] PEO-Based Solid Composite Polymer Electrolyte for High Capacity Retention All-Solid-State Lithium Metal Battery
    Khan, Kashif
    Hanif, Muhammad Bilal
    Xin, Hu
    Hussain, Arshad
    Ali, Hina Ghulam
    Fu, Bowen
    Fang, Zixuan
    Motola, Martin
    Xu, Ziqiang
    Wu, Mengqiang
    SMALL, 2024, 20 (04)
  • [29] Ag-modification argyrodite electrolytes enable high-performance for all-solid-state lithium metal batteries
    Wu, Zhongkai
    Yu, Chuang
    Wei, Chaochao
    Jiang, Ziling
    Liao, Cong
    Chen, Shuai
    Chen, Shaoqing
    Peng, Linfeng
    Cheng, Shijie
    Xie, Jia
    CHEMICAL ENGINEERING JOURNAL, 2023, 466
  • [30] Robust compound elastomers of integrated polymer cathode and electrolyte for high-performance all-solid-state lithium battery
    Hu, Wenyi
    You, Donglei
    Wei, Wei
    Xiong, Huiming
    JOURNAL OF POWER SOURCES, 2023, 555