Semi-supervised Active Learning for Video Action Detection

被引:0
|
作者
Singh, Ayush [1 ]
Rana, Aayush J. [2 ]
Kumar, Akash [2 ]
Vyas, Shruti [2 ]
Rawat, Yogesh Singh [2 ]
机构
[1] IIT ISM Dhanbad, Dhanbad, Bihar, India
[2] Univ Cent Florida, Orlando, FL USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we focus on label efficient learning for video action detection. We develop a novel semi-supervised active learning approach which utilizes both labeled as well as unlabeled data along with informative sample selection for action detection. Video action detection requires spatio-temporal localization along with classification, which poses several challenges for both active learning (informative sample selection) as well as semi-supervised learning (pseudo label generation). First, we propose NoiseAug, a simple augmentation strategy which effectively selects informative samples for video action detection. Next, we propose fft-attention, a novel technique based on high-pass filtering which enables effective utilization of pseudo label for SSL in video action detection by emphasizing on relevant activity region within a video. We evaluate the proposed approach on three different benchmark datasets, UCF-101-24, JHMDB-21, and Youtube-VOS. First, we demonstrate its effectiveness on video action detection where the proposed approach outperforms prior works in semi-supervised and weakly-supervised learning along with several baseline approaches in both UCF101-24 and JHMDB21. Next, we also show its effectiveness on Youtube-VOS for video object segmentation demonstrating its generalization capability for other dense prediction tasks in videos.
引用
收藏
页码:4891 / 4899
页数:9
相关论文
共 50 条
  • [21] METALS : seMi-supervised fEderaTed Active Learning for intrusion detection Systems
    Aouedi, Ons
    Jajoo, Gautam
    Piamrat, Kandaraj
    2024 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS, ISCC 2024, 2024,
  • [22] Semantic Segmentation with Active Semi-Supervised Learning
    Rangnekar, Aneesh
    Kanan, Christopher
    Hoffman, Matthew
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 5955 - 5966
  • [23] Active Learning Strategies for Semi-Supervised DBSCAN
    Li, Jundong
    Sander, Joerg
    Campello, Ricardo
    Zimek, Arthur
    ADVANCES IN ARTIFICIAL INTELLIGENCE, CANADIAN AI 2014, 2014, 8436 : 179 - 190
  • [24] Active Learning of Constraints for Semi-Supervised Clustering
    Xiong, Sicheng
    Azimi, Javad
    Fern, Xiaoli Z.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2014, 26 (01) : 43 - 54
  • [25] Active Learning with Effective Scoring Functions for Semi-Supervised Temporal Action Localization
    Li, Ding
    Yang, Xuebing
    Tang, Yongqiang
    Zhang, Chenyang
    Zhang, Wensheng
    arXiv, 2022,
  • [26] ASCENT: Active Supervision for Semi-Supervised Learning
    Li, Yanchao
    Wang, Yongli
    Yu, Dong-Jun
    Ye, Ning
    Hu, Peng
    Zhao, Ruxin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (05) : 868 - 882
  • [27] News Classification with Semi-Supervised and Active Learning
    Guo C.
    Chao Y.
    Data Analysis and Knowledge Discovery, 2022, 6 (04) : 28 - 38
  • [28] Deep Bayesian Active Semi-Supervised Learning
    Rottmann, Matthias
    Kahl, Karsten
    Gottschalk, Hanno
    2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, : 158 - 164
  • [29] Active learning with effective scoring functions for semi-supervised temporal action localization
    Li, Ding
    Yang, Xuebing
    Tang, Yongqiang
    Zhang, Chenyang
    Zhang, Wensheng
    Ma, Lizhuang
    DISPLAYS, 2023, 78
  • [30] ACTIVE SEMI-SUPERVISED LEARNING FOR DIFFUSIONS ON GRAPHS
    Das, Bishwadeep
    Isufi, Elvin
    Leus, Geert
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 9075 - 9079