Time and frequency-domain feature fusion network for multivariate time series classification

被引:2
|
作者
Lei, Tianyang [1 ]
Li, Jichao [1 ]
Yang, Kewei [1 ]
机构
[1] Natl Univ Def Technol, Coll Syst Engn, Deya Rd 109, Changsha 410000, Peoples R China
基金
中国国家自然科学基金;
关键词
Multivariate time series; Time-domain feature; Frequency-domain feature; Graph convolutional networks;
D O I
10.1016/j.eswa.2024.124155
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series classification is a significant research topic in the realm of data mining, which encompasses a wide array of practical applications in domains such as healthcare, energy systems, and traffic. The complex temporal and spatial dependencies inherent in multivariate time series pose challenges to classification tasks. Previous studies have usually focused on the time -domain information of multivariate time series. However, achieving accurate classification using only the time -domain information may be difficult. To address this challenge, a time and frequency -domain feature fusion network (TF-Net) for multivariate time series classification is proposed in this paper. Our model contains two modules, the time -domain module and the frequency -domain module. The time -domain module is used to capture the time -domain features of multivariate time series. It is constructed using CNNs and GCNs, enabling the capture of both temporal and spatial dependencies within the time -domain. The frequency -domain module is used to capture the frequencydomain features of multivariate time series data. In this module, we treat the frequency -domain features as images and innovatively transform the multivariate time series classification task into an image classification task. Our method is able to classify multivariate time series from both the time -domain and frequency -domain, which provides a new perspective for multivariate time series analysis. We conduct extensive experiments on the UAE archive, and the experimental results show that our model achieves the best performance compared to the ten state-of-the-art methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Time series clustering and classification via frequency domain methods
    Holan, Scott H.
    Ravishanker, Nalini
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2018, 10 (06):
  • [42] Stacking for multivariate time series classification
    Oscar J. Prieto
    Carlos J. Alonso-González
    Juan J. Rodríguez
    Pattern Analysis and Applications, 2015, 18 : 297 - 312
  • [43] Early classification on multivariate time series
    He, Guoliang
    Duan, Yong
    Peng, Rong
    Jing, Xiaoyuan
    Qian, Tieyun
    Wang, Lingling
    NEUROCOMPUTING, 2015, 149 : 777 - 787
  • [44] Stacking for multivariate time series classification
    Prieto, Oscar J.
    Alonso-Gonzalez, Carlos J.
    Rodriguez, Juan J.
    PATTERN ANALYSIS AND APPLICATIONS, 2015, 18 (02) : 297 - 312
  • [45] Noise reduction in a Brillouin optical time-domain sensor by a frequency-domain feature filter
    Yuan, Pei
    Lu, Yuangang
    Zhang, Yuyang
    Zhang, Zelin
    APPLIED OPTICS, 2022, 61 (10) : 2667 - 2674
  • [46] A Feature Extraction Method for Multivariate Time Series Classification Using Temporal Patterns
    Zhou, Pei-Yuan
    Chan, Keith C. C.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART II, 2015, 9078 : 409 - 421
  • [47] Mutual information based feature subset selection in multivariate time series classification
    Ircio, Josu
    Lojo, Aizea
    Mori, Usue
    Lozano, Jose A.
    PATTERN RECOGNITION, 2020, 108 (108)
  • [48] Multivariate Time Series Classification With An Attention-Based Multivariate Convolutional Neural Network
    Tripathi, Achyut Mani
    Baruah, Rashmi Dutta
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [49] TIME-DOMAIN OSCILLOGRAPHIC MICROWAVE NETWORK ANALYSIS USING FREQUENCY-DOMAIN DATA
    HINES, ME
    STINEHELFER, HE
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1974, TT22 (03) : 276 - 282
  • [50] Unsupervised multimodal domain adversarial network for time series classification
    Xi, Liang
    Liang, Yujia
    Huang, Xunhua
    Liu, Han
    Li, Ao
    INFORMATION SCIENCES, 2023, 624 : 147 - 164