A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides

被引:0
|
作者
Jiang, Qiwen [1 ,2 ]
Chen, Ling [1 ,2 ]
Du, Mingyang [3 ]
Duan, Defang [1 ,2 ]
机构
[1] Jilin Univ, Coll Phys, Key Lab Mat Simulat Methods & Software, Minist Educ, Changchun 130012, Peoples R China
[2] Jilin Univ, Coll Phys, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
[3] Ningbo Univ, Inst High Pressure Phys, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
high pressure; hydride; superconductivity; crystal structure; METAL-HYDRIDES; LANTHANUM; TERNARY; METALLIZATION; TRANSITION; HYDROGEN; PHASE;
D O I
10.1088/1361-648X/ad7217
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The theoretical predictions and experimental syntheses of hydrogen sulfide (H3S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] HIGH-TEMPERATURE CONDUCTIVITY AND SUPERCONDUCTIVITY OF CESIUM AT HIGH-PRESSURE
    GANDELMAN, GM
    ITSKOVICH, OY
    FINKELBERG, VM
    FIZIKA TVERDOGO TELA, 1975, 17 (04): : 1214 - 1216
  • [22] High-temperature superconductivity
    Tanaka, Shoji
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (12): : 9011 - 9024
  • [23] HIGH-TEMPERATURE SUPERCONDUCTIVITY
    MOORJANI, K
    ADRIAN, FJ
    KIM, BF
    BOHANDY, J
    PHILLIPS, TE
    KISTENMACHER, TJ
    GREEN, WJ
    AGOSTINELLI, E
    BOONE, BG
    SOVA, RM
    JOHNS HOPKINS APL TECHNICAL DIGEST, 1990, 11 (1-2): : 155 - 167
  • [24] High-temperature superconductivity
    Zhou, Xingjiang
    Lee, Wei-Sheng
    Imada, Masatoshi
    Trivedi, Nandini
    Phillips, Philip
    Kee, Hae-Young
    Torma, Paivi
    Eremets, Mikhail
    NATURE REVIEWS PHYSICS, 2021, 3 (07) : 462 - 465
  • [25] HIGH-TEMPERATURE SUPERCONDUCTIVITY
    MATTHIAS, BT
    RECHERCHE, 1973, (33): : 319 - 326
  • [26] HIGH-TEMPERATURE SUPERCONDUCTIVITY
    GUINZBURG, VL
    VESTNIK AKADEMII NAUK SSSR, 1987, (11) : 20 - 37
  • [27] High-temperature superconductivity
    Maple, M.B.
    Journal of Magnetism and Magnetic Materials, 1998, 177-181 (Pt 1): : 18 - 30
  • [28] High-temperature superconductivity
    Dow, JD
    Harshman, DR
    BRAZILIAN JOURNAL OF PHYSICS, 2003, 33 (04) : 681 - 685
  • [29] HIGH-TEMPERATURE SUPERCONDUCTIVITY
    SARASWATI, V
    CURRENT SCIENCE, 1987, 56 (17): : 872 - 878
  • [30] High-temperature superconductivity
    Xingjiang Zhou
    Wei-Sheng Lee
    Masatoshi Imada
    Nandini Trivedi
    Philip Phillips
    Hae-Young Kee
    Päivi Törmä
    Mikhail Eremets
    Nature Reviews Physics, 2021, 3 : 462 - 465