Polariton lasing in Mie-resonant perovskite nanocavity

被引:3
|
作者
Masharin, Mikhail A. [1 ,2 ]
Khmelevskaia, Daria [2 ]
Kondratiev, Valeriy I. [2 ]
Markina, Daria I. [2 ]
Utyushev, Anton D. [2 ]
Dolgintsev, Dmitriy M. [2 ]
Dmitriev, Alexey D. [2 ]
Shahnazaryan, Vanik A. [2 ,3 ]
Pushkarev, Anatoly P. [2 ]
Isik, Furkan [1 ,4 ]
Iorsh, Ivan V. [2 ,5 ]
Shelykh, Ivan A. [3 ,6 ]
Demir, Hilmi V. [1 ,4 ]
Samusev, Anton K. [2 ,7 ]
Makarov, Sergey V. [2 ,8 ]
机构
[1] Bilkent Univ, UNAM Inst Mat Sci & Nanotechnol, Natl Nanotechnol Res Ctr, Dept Elect & Elect Engn,Dept Phys, TR-06800 Ankara, Turkiye
[2] ITMO Univ, Sch Phys & Engn, St Petersburg 197101, Russia
[3] MIPT, Abrikosov Ctr Theoret Phys, Dolgoprudnyi 141701, Moscow Region, Russia
[4] Nanyang Technol Univ, LUMINOUS Ctr Excellence Semicond Lighting & Displ, Sch Elect & Elect Engn, Sch Phys & Math Sci,Sch Mat Sci & Engn, Singapore 639798, Singapore
[5] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
[6] Univ Iceland, Sci Inst, Dunhagi 3, IS-107 Reykjavik, Iceland
[7] Tech Univ Dortmund, Expt Phys 2, D-44227 Dortmund, Germany
[8] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266000, Peoples R China
关键词
nanolaser; perovskite; polariton; Mie resonance; exciton-polariton; NANOWIRE LASERS; OPTICAL GAIN; SEMICONDUCTOR; EMISSION; DYNAMICS; STATE; PHOTOLUMINESCENCE; NANOLASERS; EXCITONS;
D O I
10.29026/oea.2024.230148
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Deeply subwavelength lasers (or nanolasers) are highly demanded for compact on -chip bioimaging and sensing at the nanoscale. One of the main obstacles for the development of single -particle nanolasers with all three dimensions shorter than the emitting wavelength in the visible range is the high lasing thresholds and the resulting overheating. Here we exploit exciton-polariton condensation and mirror -image Mie modes in a cuboid CsPbBr 3 nanoparticle to achieve coherent emission at the visible wavelength of around 0.53 mu m from its ultra -small ( approximate to 0.007 mu m 3 or approximate to lambda 3 / 2 0) semiconductor nanocavity. The polaritonic nature of the emission from the nanocavity localized in all three dimensions is proven by direct comparison with corresponding one-dimensional and two-dimensional waveguiding systems with similar material parameters. Such a deeply subwavelength nanolaser is enabled not only by the high values for exciton binding energy ( approximate to 35 meV), refractive index (>2.5 at low temperature), and luminescence quantum yield of CsPbBr 3 , but also by the optimization of polaritons condensation on the Mie resonances with quality factors improved by the metallic substrate. Moreover, the key parameters for optimal lasing conditions are intermode free spectral range and phonons spectrum in CsPbBr 3 , which govern polaritons condensation path. Such chemically synthesized colloidal CsPbBr 3 nanolasers can be potentially deposited on arbitrary surfaces, which makes them a versatile tool for integration with various on -chip systems.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Transdimensional photonic lattices with multipole Mie-resonant nanoantennas
    Babicheva, Viktoriia E.
    20TH IEEE INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE NANO 2020), 2020, : 233 - 237
  • [22] Nonlinear Mie-resonant meta-optics and metasurfaces
    Kivshar, Yuri
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [23] Reconfigurable semiconductor Mie-resonant meta-optics
    Lewi, Tomer
    Butakov, Nikita A.
    Iyer, Prasad P.
    Evans, Hayden A.
    Higgs, David
    Chorsi, Hamid
    Trastoy, Juan
    Granda, Javier Del Valle
    Valmianski, Ilya
    Urban, Christian
    Kalcheim, Yoav
    Wang, Paul Y.
    Schuller, Ivan K.
    Schuller, Jon A.
    METAMATERIALS, METADEVICES, AND METASYSTEMS 2019, 2019, 11080
  • [24] Tailored Nonlinear Anisotropy in Mie-Resonant Dielectric Oligomers
    Kroychuk, Maria K.
    Yagudin, Damir F.
    Shorokhov, Alexander S.
    Smirnova, Daria A.
    Volkovskaya, Irina I.
    Shcherbakov, Maxim R.
    Shvets, Gennady
    Kivshar, Yuri S.
    Fedyanin, Andrey A.
    ADVANCED OPTICAL MATERIALS, 2019, 7 (20):
  • [25] Monolayer of Mie-Resonant Silicon Nanospheres for Structural Coloration
    Tanaka, Haruki
    Hotta, Shinnosuke
    Hinamoto, Tatsuki
    Sugimoto, Hiroshi
    Fujii, Minoru
    ACS APPLIED NANO MATERIALS, 2024, 7 (03) : 2605 - 2613
  • [26] Supercavity modes in stacked identical Mie-resonant metasurfaces
    Zhang X.
    Zhang X.
    Bradley A.L.
    Physical Review B, 2023, 108 (19)
  • [27] Photovoltaic parameters improvement via size control of monodisperse Mie-resonant nanoparticles in perovskite solar cells
    Furasova, Aleksandra
    Krassas, Miron
    Tountas, Marinos
    Khmelevskaia, Daria
    Logunov, Lev
    Zhirihin, Dmitry
    Kymakis, Emmanuel
    Makarov, Sergey
    CHEMICAL ENGINEERING JOURNAL, 2024, 493
  • [28] Active Tuning of Spontaneous Emission by Mie-Resonant Dielectric Metasurfaces
    Bohn, Justus
    Bucher, Tobias
    Chong, Katie E.
    Komar, Andrei
    Choi, Duk-Yong
    Neshev, Dragomir N.
    Kivshar, Yuri S.
    Pertsch, Thomas
    Staude, Isabelle
    NANO LETTERS, 2018, 18 (06) : 3461 - 3465
  • [29] Stimulated Raman Scattering from Mie-Resonant Subwavelength Nanoparticles
    Zograf, George P.
    Ryabov, Daniil
    Rutckaia, Viktoria
    Voroshilov, Pavel
    Tonkaev, Pavel
    Permyakov, Dmitry, V
    Kivshar, Yuri
    Makarov, Sergey, V
    NANO LETTERS, 2020, 20 (08) : 5786 - 5791
  • [30] Second-Harmonic Generation in Mie-Resonant GaAs Nanowires
    de Ceglia, Domenico
    Carletti, Luca
    Vincenti, Maria Antonietta
    De Angelis, Costantino
    Scalora, Michael
    APPLIED SCIENCES-BASEL, 2019, 9 (16):