machine learning;
sky models;
solar energy;
solar radiation;
tilted surface;
SUPPORT VECTOR MACHINE;
NEURAL-NETWORK;
RADIATION;
TEMPERATURE;
ANN;
D O I:
10.21272/jes.2022.9(2).g1
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
In this study, two supervised machine learning models (Extreme Gradient Boosting and K -nearest Neighbour) and four isotropic sky models (Liu and Jordan, Badescu, Koronakis, and Tian) were employed to estimate global solar radiation on daily data measured for one year period at the National Center for Energy, Research and Development (NCERD) at the University of Nigeria, Nsukka. Two solarimeters were employed to measure solar radiation: one measured solar radiation on a tilted surface at a 15 degrees angle of tilt, facing south, and the other measured global horizontal solar radiation. The measured global horizontal solar radiation and the time and day number were used as input for the prediction process. Python computational software was used for model prediction, and the performance of each model was assessed using statistical methods such as mean bias error (MBE), mean absolute error (MAE), and root mean square error (RMSE) (RMSE). Compared to the measured data, it was discovered that the Extreme Gradient Boosting (XGBoost ) algorithm offered the best performance with the least inaccuracy to sky models.
机构:
Univ Calif Los Angeles, Garrick Inst Risk Sci, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Civil & Environm Engn, Los Angeles, CA 90095 USAUniv Chile, Fac Ciencias Fis & Matemat, Dept Ingn Mecan, Santiago 8370456, Chile
Droguett, Enrique Lopez
Cardemil, Jose M.
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Chile, Escuela Ingn, Dept Ingn Mecan & Metalurg, Vicuna Mackenna 4860, Santiago, ChileUniv Chile, Fac Ciencias Fis & Matemat, Dept Ingn Mecan, Santiago 8370456, Chile
Cardemil, Jose M.
Starke, Allan R.
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Santa Catarina UFSC, LEPTEN Lab Energy Convers Engn & Energy Technol, Dept Mech Engn, Florianopolis, BrazilUniv Chile, Fac Ciencias Fis & Matemat, Dept Ingn Mecan, Santiago 8370456, Chile
Starke, Allan R.
Cornejo-Ponce, Lorena
论文数: 0引用数: 0
h-index: 0
机构:
Univ Chile, Fac Ciencias Fis & Matemat, Dept Ingn Mecan, Santiago 8370456, Chile
Univ Tarapaca, LIMZA, Lab Invest Medioambientales Zonas Aridas, Arica 1100000, ChileUniv Chile, Fac Ciencias Fis & Matemat, Dept Ingn Mecan, Santiago 8370456, Chile
机构:
Fed Univ Latin Amer Integrat, Interdisciplinary Postgrad Program Energy & Sustai, BR-85867000 Parana, Brazil
Fed Univ Latin Amer Integrat UNILA, Postgrad Program Appl Phys PPGFISA, BR-85867000 Parana, Brazil
Fed Rural Univ Pernambuco UFRPE, Acad Unit Cabo De Santo Agostinho UACSA, Res Grp Energy & Energy Sustainabil GPEnSE, BR-54518430 Cabo De Santo Agostinho, BrazilFed Univ Latin Amer Integrat, Interdisciplinary Postgrad Program Energy & Sustai, BR-85867000 Parana, Brazil
Maciel, Joylan Nunes
Ledesma, Jorge Javier Gimenez
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Latin Amer Integrat, Interdisciplinary Postgrad Program Energy & Sustai, BR-85867000 Parana, Brazil
Fed Rural Univ Pernambuco UFRPE, Acad Unit Cabo De Santo Agostinho UACSA, Res Grp Energy & Energy Sustainabil GPEnSE, BR-54518430 Cabo De Santo Agostinho, BrazilFed Univ Latin Amer Integrat, Interdisciplinary Postgrad Program Energy & Sustai, BR-85867000 Parana, Brazil
Ledesma, Jorge Javier Gimenez
Ando Junior, Oswaldo Hideo
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Latin Amer Integrat, Interdisciplinary Postgrad Program Energy & Sustai, BR-85867000 Parana, Brazil
Fed Rural Univ Pernambuco UFRPE, Acad Unit Cabo De Santo Agostinho UACSA, Res Grp Energy & Energy Sustainabil GPEnSE, BR-54518430 Cabo De Santo Agostinho, Brazil
Fed Rural Univ Pernambuco UFRPE, Program Energy Syst Engn PPGESE, Acad Unit Cabo De Santo Agostinho UACSA, BR-54518430 Cabo De Santo Agostinho, BrazilFed Univ Latin Amer Integrat, Interdisciplinary Postgrad Program Energy & Sustai, BR-85867000 Parana, Brazil