UniGen: A Unified Generative Framework for Retrieval and Question Answering with Large Language Models

被引:0
|
作者
Li, Xiaoxi [1 ]
Zhou, Yujia
Dou, Zhicheng
机构
[1] Renmin Univ China, Gaoling Sch Artificial Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative information retrieval, encompassing two major tasks of Generative Document Retrieval (GDR) and Grounded Answer Generation (GAR), has gained significant attention in the area of information retrieval and natural language processing. Existing methods for GDR and GAR rely on separate retrieval and reader modules, which hinder simultaneous optimization. To overcome this, we present UniGen, a Unified Generative framework for retrieval and question answering that integrates both tasks into a single generative model leveraging the capabilities of large language models. UniGen employs a shared encoder and two distinct decoders for generative retrieval and question answering. To facilitate the learning of both tasks, we introduce connectors, generated by large language models, to bridge the gaps between query inputs and generation targets, as well as between document identifiers and answers. Furthermore, we propose an iterative enhancement strategy that leverages generated answers and retrieved documents to iteratively improve both tasks. Through extensive experiments on the MS MARCO and NQ datasets, we demonstrate the effectiveness of UniGen, showcasing its superior performance in both the retrieval and the question answering tasks.
引用
收藏
页码:8688 / 8696
页数:9
相关论文
共 50 条
  • [31] Retrieval-Augmented Generation Approach: Document Question Answering using Large Language Model
    Muludi, Kurnia
    Fitria, Kaira Milani
    Triloka, Joko
    Sutedi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (03) : 776 - 785
  • [32] GraphLLM: A General Framework for Multi-hop Question Answering over Knowledge Graphs Using Large Language Models
    Qi, Zijian
    Li, Nan
    Huang, Chenxi
    Wang, Gangliang
    Liang, Shenglin
    Lin, Hui
    Guo, Qinglang
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT I, NLPCC 2024, 2025, 15359 : 136 - 148
  • [33] UniRaG: Unification, Retrieval, and Generation for Multimodal Question Answering With Pre-Trained Language Models
    Lim, Qi Zhi
    Lee, Chin Poo
    Lim, Kian Ming
    Samingan, Ahmad Kamsani
    IEEE ACCESS, 2024, 12 : 71505 - 71519
  • [34] A Bidirectional Question-Answering System using Large Language Models and Knowledge Graphs
    Han, Lifan
    Wang, Xin
    Li, Zhao
    Zhang, Heyi
    Chen, Zirui
    WEB AND BIG DATA, APWEB-WAIM 2023 INTERNATIONAL WORKSHOPS-KGMA 2023 AND SEMIBDMA 2023, 2024, 2094 : 3 - 10
  • [35] MedREQAL: Examining Medical Knowledge Recall of Large Language Models via Question Answering
    Vladika, Juraj
    Schneider, Phillip
    Matthes, Florian
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 14459 - 14469
  • [36] Semantic Parsing for Question and Answering over Scholarly Knowledge Graph with Large Language Models
    Le-Minh Nguyen
    Le-Nguyen Khang
    Kieu Que Anh
    Nguyen Dieu Hien
    Nagai, Yukari
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE, JSAI-ISAI 2024, 2024, 14741 : 284 - 298
  • [37] Advancing Faithfulness of Large Language Models in Goal-Oriented Dialogue Question Answering
    Sticha, Abigail
    Braunschweiler, Norbert
    Doddipatla, Rama
    Knill, Kate
    PROCEEDINGS OF THE 6TH CONFERENCE ON ACM CONVERSATIONAL USER INTERFACES, CUI 2024, 2024,
  • [38] Knowledge Graph Enhancement for Improved Natural Language Health Question Answering using Large Language Models
    Jamil, Hasan M.
    Oduro-Afriyie, Joel
    SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT 36TH INTERNATIONAL CONFERENCE, SSDBM 2024, 2024,
  • [39] Review of Research Progress on Question-Answering Techniques Based on Large Language Models
    Wen, Sen
    Qian, Li
    Hu, Maodi
    Chang, Zhijun
    Data Analysis and Knowledge Discovery, 2024, 8 (06) : 16 - 29
  • [40] A Survey on Multimodal Large Language Models in Radiology for Report Generation and Visual Question Answering
    Yi, Ziruo
    Xiao, Ting
    Albert, Mark V.
    INFORMATION, 2025, 16 (02)