Amorphous Fe2O3 Anchored on N-Doped Graphene with Internal Micro-Channels as an Active and Durable Anode for Sodium-Ion Batteries

被引:0
|
作者
Li, Lin [1 ]
Li, Hui [2 ]
Liu, Linxin [1 ]
Yan, Xunchang [1 ]
Long, Yunze [1 ,2 ]
Han, Wenpeng [1 ,2 ]
机构
[1] Qingdao Univ, Coll Phys, Collaborat Innovat Ctr Nanomat & Devices, Qingdao 266071, Peoples R China
[2] Qingdao Univ, State Key Lab Biofibers & Ecotext, Qingdao 266071, Peoples R China
关键词
graphene-based macroscopic material; functional composites; energy storage; HIGH-PERFORMANCE ANODES; LI-ION; NANOPARTICLES; NANOSHEETS; NANOSPHERES; NANOFIBERS; ELECTRODE; CAPACITY; GROWTH; OXIDE;
D O I
10.3390/nano14110937
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The reduced graphene oxide (rGO) exhibits outstanding electrical conductivity and a high specific surface area, making it a promising material for various applications. Fe2O3 is highly desirable due to its significant theoretical capacity and cost-effectiveness, high abundance, and environmental friendliness. However, the performance of these r-GO/Fe2O3 composite electrodes still needs to be further improved, especially in terms of cycle stability. The composite of Fe2O3 anchored on N-doped graphene with inside micro-channels (Fe2O3@N-GIMC) was used to be efficiently prepared. Because the inside channels can furnish extra transmission pathways and absorption websites and the interconnected structure can efficaciously forestall pulverization and aggregation of electrode materials. In addition, N doping is also beneficial to improve its electrochemical performance. Thus, it demonstrates exceptional sodium storage characteristics, including notable electrochemical activity, impressive initial Coulombic efficiency, and favorable rate performance. The optimized Fe2O3@N-GIMC indicates outstanding discharge capacity (573.5 mAh g(-1) at 1 A g(-1)), significant rate performance (333.6 mAh g(-1) at 8 A g(-1)), and stable long-term cycle durability (308.9 mAh g(-1) after 1000 cycles at 1 A g(-1), 200.8 mAh g(-1) after 4000 cycles at 1 A g(-1)) as a sodium-ion battery anode. This presents a new approach for preparing graphene-based high-functional composites and lays a stable basis for further expanding its application field.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A simple synthesized N-doped FeS2/Fe3O4@C nanocomposite as anode for sodium ion batteries
    Song, Xi
    Li, Xuan
    Chen, Zehong
    Wang, Zhongde
    MATERIALS LETTERS, 2020, 275 (275)
  • [32] TiO2-x Nanocages Anchored in N-Doped Carbon Fiber Films as a Flexible Anode for High-Energy Sodium-Ion Batteries
    Zhao, Qianqian
    Bi, Ran
    Cui, Jie
    Yang, Xianfeng
    Zhang, Lei
    ACS APPLIED ENERGY MATERIALS, 2018, 1 (09): : 4459 - 4466
  • [33] Hydrothermal Synthesis of N-Doped Graphene/Fe2O3 Nanocomposite for Supercapacitors
    Pu, Nen-Wen
    Chen, Chun-Yu
    Qiu, Hao-Xiang
    Liu, Yih-Ming
    Song, Cheng-Han
    Lin, Ming-Hsien
    Ger, Ming-Der
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (07): : 6812 - 6823
  • [34] Bismuth Nano-Rods Wrapped with Graphene and N-Doped C as Anode Materials for Potassium- and Sodium-Ion Batteries
    Qiao, Shuangyan
    Liu, Yongning
    Wang, Kai
    Chong, Shaokun
    BATTERIES-BASEL, 2023, 9 (10):
  • [35] Graphene oxide wrapped Fe2O3 as a durable anode material for high-performance lithium-ion batteries
    Li, Henan
    Zhu, Xiaofei
    Sitinamaluwa, Hansinee
    Wasalathilake, Kimal
    Xu, Li
    Zhang, Shanqing
    Yan, Cheng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 714 : 425 - 432
  • [36] Freestanding N-Doped Carbon Coated CuO Array Anode for Lithium-Ion and Sodium-Ion Batteries
    Li, Yuejiao
    Zhang, Menglu
    Qian, Ji
    Ma, Yitian
    Li, Yu
    Li, Wanlong
    Wang, Fujie
    Li, Li
    Wu, Feng
    Chen, Renjie
    ENERGY TECHNOLOGY, 2019, 7 (07)
  • [37] N-doped hollow porous carbon microspheres with high rate performance as anode for sodium-ion batteries
    Wang, Xin
    Zhu, Fuliang
    Xiao, Mingjun
    Liu, Shizhe
    Liu, Xingzhong
    Meng, Yanshuang
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (10) : 7913 - 7922
  • [38] N-doped hollow porous carbon microspheres with high rate performance as anode for sodium-ion batteries
    Xin Wang
    Fuliang Zhu
    Mingjun Xiao
    Shizhe Liu
    Xingzhong Liu
    Yanshuang Meng
    Journal of Materials Science: Materials in Electronics, 2022, 33 : 7913 - 7922
  • [39] Tin selenide/N-doped carbon composite as a conversion and alloying type anode for sodium-ion batteries
    Shaji, Nitheesha
    Santhoshkumar, P.
    Kang, Hyeong Seop
    Nanthagopal, Murugan
    Park, Jae Woo
    Praveen, Sekar
    Sim, Gyu Sang
    Senthil, Chenrayan
    Lee, Chang Woo
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834
  • [40] Converting biomass tar into N-doped biochar: A promising anode material for enhanced sodium-ion batteries
    Wu, Guangxing
    Zhang, Huan
    Zhang, Xiuqiang
    Guan, Qian
    Zhang, Weiwei
    Lu, Jia
    Lan, Weijuan
    Li, Zaifeng
    Yang, Shuhua
    Shi, Hongying
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2025, 188