Multi-scale skeleton simplification graph convolutional network for skeleton-based action recognition

被引:0
|
作者
Fan, Zhang [1 ]
Ding, Chongyang [1 ]
Kai, Liu [1 ]
Liu, Hongjin [2 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian, Peoples R China
[2] SunWise Space Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
computer vision; convolution; feature extraction; neural net architecture; neural nets;
D O I
10.1049/cvi2.12300
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human action recognition based on graph convolutional networks (GCNs) is one of the hotspots in computer vision. However, previous methods generally rely on handcrafted graph, which limits the effectiveness of the model in characterising the connections between indirectly connected joints. The limitation leads to weakened connections when joints are separated by long distances. To address the above issue, the authors propose a skeleton simplification method which aims to reduce the number of joints and the distance between joints by merging adjacent joints into simplified joints. Group convolutional block is devised to extract the internal features of the simplified joints. Additionally, the authors enhance the method by introducing multi-scale modelling, which maps inputs into sequences across various levels of simplification. Combining with spatial temporal graph convolution, a multi-scale skeleton simplification GCN for skeleton-based action recognition (M3S-GCN) is proposed for fusing multi-scale skeleton sequences and modelling the connections between joints. Finally, M3S-GCN is evaluated on five benchmarks of NTU RGB+D 60 (C-Sub, C-View), NTU RGB+D 120 (X-Sub, X-Set) and NW-UCLA datasets. Experimental results show that the authors' M3S-GCN achieves state-of-the-art performance with the accuracies of 93.0%, 97.0% and 91.2% on C-Sub, C-View and X-Set benchmarks, which validates the effectiveness of the method. The authors propose a multi-scale skeleton simplification graph convolutional network (M3S-GCN) for skeleton-based action recognition. The model leverages skeleton simplification and multi-scale modelling to effectively capture the intricate connections between the joints, and achieves state-of-the-art performance on three benchmarks, the NTU RGB+D C-Sub, NTU RGB+D C-View and NTU RGB+D 120 X-Set. image
引用
收藏
页码:992 / 1003
页数:12
相关论文
共 50 条
  • [21] Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognition
    Huang, Linjiang
    Huang, Yan
    Ouyang, Wanli
    Wang, Liang
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 93 - 102
  • [22] Feedback Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Hao
    Yan, Dan
    Zhang, Li
    Sun, Yunda
    Li, Dong
    Maybank, Stephen J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 164 - 175
  • [23] Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition
    Cheng, Qin
    Cheng, Jun
    Ren, Ziliang
    Zhang, Qieshi
    Liu, Jianming
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1303 - 1315
  • [24] Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition
    Yang, Huaigang
    Ren, Ziliang
    Yuan, Huaqiang
    Wei, Wenhong
    Zhang, Qieshi
    Zhang, Zhaolong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [25] Multi-temporal scale aggregation refinement graph convolutional network for skeleton-based action recognition
    Li, Xuanfeng
    Lu, Jian
    Zhou, Jian
    Liu, Wei
    Zhang, Kaibing
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2024, 35 (01)
  • [26] Multiple temporal scale aggregation graph convolutional network for skeleton-based action recognition
    Li, Xuanfeng
    Lu, Jian
    Zhou, Jian
    Liu, Wei
    Zhang, Kaibing
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [27] Spatial adaptive graph convolutional network for skeleton-based action recognition
    Zhu, Qilin
    Deng, Hongmin
    APPLIED INTELLIGENCE, 2023, 53 (14) : 17796 - 17808
  • [28] Relation Selective Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SYMMETRY-BASEL, 2021, 13 (12):
  • [29] EARLY FUSION GRAPH CONVOLUTIONAL NETWORK FOR SKELETON-BASED ACTION RECOGNITION
    Zhao, Xiaoxue
    Liu, Cuiwei
    Shi, Xiangbin
    2021 IEEE 31ST INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2021,
  • [30] Selective directed graph convolutional network for skeleton-based action recognition
    Ke, Chengyuan
    Liu, Sheng
    Feng, Yuan
    Chen, Shengyong
    PATTERN RECOGNITION LETTERS, 2025, 190 : 141 - 146