Machine-learning-based estimate of the wind speed over complex terrain using the long short-term memory (LSTM) recurrent neural network

被引:2
|
作者
Leme Beu, Cassia Maria [1 ]
Landulfo, Eduardo [1 ]
机构
[1] Inst Pesquisas Energet & Nucl IPEN, 2242 Prof Lineu Prestes, Sao Paulo, Brazil
关键词
SAO-PAULO; EXTRAPOLATION;
D O I
10.5194/wes-9-1431-2024
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate estimation of the wind speed profile is crucial for a range of activities such as wind energy and aviation. The power law and the logarithmic-based profiles have been widely used as universal formulas to extrapolate the wind speed profile. However, these traditional methods have limitations in capturing the complexity of the wind flow, mainly over complex terrain. In recent years, the machine-learning techniques have emerged as a promising tool for estimating the wind speed profiles. In this study, we used the long short-term memory (LSTM) recurrent neural network and observational lidar datasets from three different sites over complex terrain to estimate the wind profile up to 230 m. Our results showed that the LSTM outperformed the power law as the distance from the surface increased. The coefficient of determination (R2) was greater than 90 % up to 100 m for input variables up to a 40 m height only. However, the performance of the model improved when the 60 m wind speed was added to the input dataset. Furthermore, we found that the LSTM model trained on one site with 40 and 60 m observational data and when applied to other sites also outperformed the power law. Our results show that the machine-learning techniques, particularly LSTM, are a promising tool for accurately estimating the wind speed profiles over complex terrain, even for short observational campaigns.
引用
收藏
页码:1431 / 1450
页数:20
相关论文
共 50 条
  • [21] Wind Speed Forecasting Using Recurrent Neural Networks and Long Short Term Memory
    Ningsih, Fitriana R.
    Djamal, Esmeralda C.
    Najmurrakhman, Asep
    PROCEEDINGS OF THE 2019 6TH INTERNATIONAL CONFERENCE ON INSTRUMENTATION, CONTROL, AND AUTOMATION (ICA), 2019, : 137 - 141
  • [22] Research on A Forecasting Model of Wind Power based on Recurrent Neural Network with Long Short-term Memory
    Li, Anying
    Cheng, Lei
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 1776 - 1779
  • [23] Language Identification in Short Utterances Using Long Short-Term Memory (LSTM) Recurrent Neural Networks
    Zazo, Ruben
    Lozano-Diez, Alicia
    Gonzalez-Dominguez, Javier
    Toledano, Doroteo T.
    Gonzalez-Rodriguez, Joaquin
    PLOS ONE, 2016, 11 (01):
  • [24] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [25] Simplified Gating in Long Short-term Memory (LSTM) Recurrent Neural Networks
    Lu, Yuzhen
    Salem, Fathi M.
    2017 IEEE 60TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2017, : 1601 - 1604
  • [26] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [27] An Intelligent Recurrent Neural Network with Long Short-Term Memory (LSTM) BASED Batch Normalization for Medical Image Denoising
    R. Rajeev
    J. Abdul Samath
    N. K. Karthikeyan
    Journal of Medical Systems, 2019, 43
  • [28] An Intelligent Recurrent Neural Network with Long Short-Term Memory (LSTM) BASED Batch Normalization for Medical Image Denoising
    Rajeev, R.
    Samath, J. Abdul
    Karthikeyan, N. K.
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (08)
  • [29] Short-Term Traffic Congestion Forecasting Using Attention-Based Long Short-Term Memory Recurrent Neural Network
    Zhang, Tianlin
    Liu, Ying
    Cui, Zhenyu
    Leng, Jiaxu
    Xie, Weihong
    Zhang, Liang
    COMPUTATIONAL SCIENCE - ICCS 2019, PT III, 2019, 11538 : 304 - 314
  • [30] Predicting Short-term Traffic Flow by Long Short-Term Memory Recurrent Neural Network
    Tian, Yongxue
    Pan, Li
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 153 - 158