Improving Neural Network Generalization on Data-limited Regression with Doubly-Robust Boosting

被引:0
|
作者
Wang, Hao [1 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Enhancing the generalization performance of neural networks given limited data availability remains a formidable challenge, due to the model selection trade-off between training error and generalization gap. To handle this challenge, we present a posterior optimization issue, specifically designed to reduce the generalization error of trained neural networks. To operationalize this concept, we propose a Doubly-Robust Boosting machine (DRBoost) which consists of a statistical learner and a zero-order optimizer. The statistical learner reduces the model capacity and thus the generalization gap; the zero-order optimizer minimizes the training error in a gradient-free manner. The two components cooperate to reduce the generalization error of a fully trained neural network in a doubly robust manner. Furthermore, the statistical learner alleviates the multi-collinearity in the discriminative layer and enhances the generalization performance. The zero-order optimizer eliminates the reliance on gradient calculation and offers more flexibility in learning objective selection. Experiments demonstrate that DRBoost improves the generalization performance of various prevalent neural network backbones effectively.
引用
收藏
页码:20821 / 20829
页数:9
相关论文
共 50 条
  • [41] Robust Motion Regression of Resting-State Data Using a Convolutional Neural Network Model
    Yang, Zhengshi
    Zhuang, Xiaowei
    Sreenivasan, Karthik
    Mishra, Virendra
    Cordes, Dietmar
    Weiner, Michael W.
    Aisen, Paul
    Weiner, Michael
    Petersen, Ronald
    Jack, Clifford R., Jr.
    Jagust, William
    Trojanowki, John Q.
    Toga, Arthur W.
    Beckett, Laurel
    Green, Robert C.
    Saykin, Andrew J.
    Morris, John
    Shaw, Leslie M.
    Khachaturian, Zaven
    Sorensen, Greg
    Carrillo, Maria
    Kuller, Lew
    Raichle, Marc
    Paul, Steven
    Davies, Peter
    Fillit, Howard
    Hefti, Franz
    Holtzman, David
    Mesulam, M. Marcel
    Potter, William
    Snyder, Peter
    Lilly, Eli
    Logovinsky, Veronika
    Montine, Tom
    Jimenez, Gustavo
    Donohue, Michael
    Gessert, Devon
    Harless, Kelly
    Salazar, Jennifer
    Cabrera, Yuliana
    Walter, Sarah
    Hergesheimer, Lindsey
    Harvey, Danielle
    Bernstein, Matthew
    Fox, Nick
    Thompson, Paul
    Schuff, Norbert
    DeCArli, Charles
    Borowski, Bret
    Gunter, Jeff
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [42] Computer-aided optimal designs for improving neural network generalization
    Issanchou, Sebastien
    Gauchi, Jean-Pierre
    NEURAL NETWORKS, 2008, 21 (07) : 945 - 950
  • [43] Improving Generalization of Artificial Neural Network Model for Thermal Load Prediction
    He Dasi
    Fan Xiaowei
    ICIEA: 2009 4TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-6, 2009, : 1301 - 1305
  • [44] A new regularization learning method for improving generalization capability of neural network
    Wu, Y
    Zhang, LM
    PROCEEDINGS OF THE 4TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-4, 2002, : 2011 - 2015
  • [45] A Bayesian Convolutional Neural Network for Robust Galaxy Ellipticity Regression
    Theobald, Claire
    Arcelin, Bastien
    Pennerath, Frederic
    Conan-Guez, Brieuc
    Couceiro, Miguel
    Napoli, Amedeo
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2021: APPLIED DATA SCIENCE TRACK, PT V, 2021, 12979 : 135 - 150
  • [46] Methods for Estimating Population Density in Data-Limited Areas: Evaluating Regression and Tree-Based Models in Peru
    Anderson, Weston
    Guikema, Seth
    Zaitchik, Ben
    Pan, William
    PLOS ONE, 2014, 9 (07):
  • [47] Evaluation of geostatistical and multiple regression models for assessment of spatial characteristics of carbon monoxide concentration in a data-limited environment
    Njoku, Elijah Akwarandu
    Akpan, Patrick Etim
    Effiong, Augustine Edet
    Babatunde, Isaac Oluwatosin
    Owoseni, Olujimi Afolabi
    Olanrewaju, Joel Omoniyi
    APPLIED GEOGRAPHY, 2022, 149
  • [48] Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data
    Cao, Weihua
    Tsiatis, Anastasios A.
    Davidian, Marie
    BIOMETRIKA, 2009, 96 (03) : 723 - 734
  • [49] Improving Limited Resource Speech Recognition Performance with Latent Regression Bayesian Network
    Xu, Liang
    Zhao, Yue
    Xu, Xiaona
    Liu, Yigang
    Ji, Qiang
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2023, PT VIII, 2023, 14261 : 384 - 394
  • [50] Improving Data Generalization With Variational Autoencoders for Network Traffic Anomaly Detection
    Monshizadeh, Mehrnoosh
    Khatri, Vikramajeet
    Gamdou, Marah
    Kantola, Raimo
    Yan, Zheng
    IEEE ACCESS, 2021, 9 : 56893 - 56907