Estimation of Lateral Velocity and Cornering Stiffness in Vehicle Dynamics Based on Multi-Source Information Fusion

被引:7
|
作者
Chen, Guoying [1 ,2 ]
Yao, Jun [1 ,4 ]
Gao, Zhenhai [1 ]
Gao, Zheng [1 ]
Wang, Xinyu [1 ]
Xu, Nan [1 ]
Hua, Min [3 ]
机构
[1] Jilin Univ, ASCL, Changchun, Peoples R China
[2] Jilin Univ, Chongqing Res Inst, Changchun, Peoples R China
[3] Univ Birmingham, Sch Chem Engn, Edgbaston, England
[4] Jilin Univ, State Key Lab Automot Simulat & Control, Changchun, Peoples R China
基金
中国国家自然科学基金;
关键词
State estimation; Vehicle dynamics; Key parameters; Multi-source information fusion; SIDESLIP ANGLE ESTIMATION; KALMAN FILTER;
D O I
10.4271/10-08-01-0003
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
To address the challenge of directly measuring essential dynamic parameters of vehicles, this article introduces a multi -source information fusion estimation method. Using the intelligent front camera (IFC) sensor to analyze lane line polynomial information and a kinematic model, the vehicle's lateral velocity and sideslip angle can be determined without extra sensor expenses. After evaluating the strengths and weaknesses of the two aforementioned lateral velocity estimation techniques, a fusion estimation approach for lateral velocity is proposed. This approach extracts the vehicle's lateral dynamic characteristics to calculate the fusion allocation coefficient. Subsequently, the outcomes from the two lateral velocity estimation techniques are merged, ensuring rapid convergence under steady-state conditions and precise tracking in dynamic scenarios. In addition, we introduce a tire parameter online adaptive module (TPOAM) to continually update essential tire parameters such as cornering stiffnesses, with its effectiveness demonstrated through DLC and slalom simulation tests. Using a dual extended Kalman filter (DEKF) observer, the article allows for joint estimation of vehicle states and tire parameters. Ultimately, we offer a cost-effective estimation method of vital dynamic vehicle parameters to support the motion control module in autonomous driving.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Multi-source multi-sensor information fusion
    Jitendra R. Raol
    Sadhana, 2004, 29 : 143 - 144
  • [22] Multi-source multi-sensor information fusion
    Raol, JR
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2004, 29 (2): : 143 - 144
  • [23] Modeling intelligence information: Multi-source fusion
    Yager, RR
    2005 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE FOR HOMELAND SECURITY AND PERSONAL SAFETY, 2005, : 2 - 7
  • [24] Multi-source information fusion:Progress and future
    Xinde LI
    Fir DUNKIN
    Jean DEZERT
    ChineseJournalofAeronautics, 2024, 37 (07) : 24 - 58
  • [25] Multi-source information fusion: Progress and future
    Li, Xinde
    Dunkin, Fir
    Dezert, Jean
    CHINESE JOURNAL OF AERONAUTICS, 2024, 37 (07) : 24 - 58
  • [26] Multi-source Information Fusion for Depression Detection
    Wang, Rongquan
    Wang, Huiwei
    Hu, Yan
    Wei, Lin
    Ma, Huimin
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT V, 2024, 14429 : 517 - 528
  • [27] A Fusion Method of Multi-Source Organization Information
    Sun, Zhen
    Zhao, Jie
    Jin, Jiang
    Gong, Zheng
    Xue, Chun
    Duan, Li-juan
    INTERNATIONAL ACADEMIC CONFERENCE ON THE INFORMATION SCIENCE AND COMMUNICATION ENGINEERING (ISCE 2014), 2014, : 626 - 632
  • [28] Ensemble Learning for Multi-source Information Fusion
    Beyer, Joerg
    Heesche, Kai
    Hauptmann, Werner
    Otte, Clemens
    Kruse, Rudolf
    SYMBOLIC AND QUANTITATIVE APPROACHES TO REASONING WITH UNCERTAINTY, PROCEEDINGS, 2009, 5590 : 748 - +
  • [29] Multi-source information fusion based on K-L information distance
    Xie Gui-hua
    Zhang Jia-sheng
    ROCK AND SOIL MECHANICS, 2010, 31 (09) : 2983 - 2986
  • [30] Multi-source information fusion and its application
    You, Linru
    Zhang, Jinge
    Wang, Yan
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2000, 32 (04): : 101 - 103