Error Analysis of a New Euler Semi-Implicit Time-Discrete Scheme for the Incompressible MHD System with Variable Density

被引:0
|
作者
Li, Yuan [1 ]
Cui, Xuewei [1 ]
机构
[1] Wenzhou Univ, Coll Math & Phys, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnetohydrodynamics; variable density flows; Euler semi-implicit scheme; error analysis; GLOBAL STRONG SOLUTION; FINITE-ELEMENT-METHOD; WELL-POSEDNESS; EQUATIONS; FLOWS; CONVERGENCE; FEM;
D O I
10.4208/aamm.OA-2023-0025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The incompressible magnetohydrodynamics system with variable density is coupled by the incompressible Navier-Stokes equations with variable density and the Maxwell equations. In this paper, we study a new first-order Euler semi-discrete scheme for solving this system. The proposed numerical scheme is unconditionally stable for any time step size tau > 0. Furthermore, a rigorous error analysis is presented and the first-order temporal convergence rate O (tau) is derived by using the method of mathematical induction and the discrete maximal L-p-regularity of the Stokes problem. Finally, numerical results are given to support the theoretical analysis.
引用
收藏
页码:263 / 294
页数:32
相关论文
共 50 条
  • [21] Optimal error estimates of second-order semi-discrete stabilized scheme for the incompressible MHD equations
    Wang, Zhaowei
    Wang, Danxia
    Zhang, Jun
    Jia, Hongen
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2025, 71 (01) : 323 - 363
  • [22] High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system
    Jiang, Yanqun
    Chen, Xun
    Zhang, Xu
    Xiong, Tao
    Zhou, Shuguang
    ADVANCES IN AERODYNAMICS, 2020, 2 (01)
  • [23] High order semi-implicit weighted compact nonlinear scheme for the all-Mach isentropic Euler system
    Yanqun Jiang
    Xun Chen
    Xu Zhang
    Tao Xiong
    Shuguang Zhou
    Advances in Aerodynamics, 2
  • [24] Convergence analysis of semi-implicit Euler methods for solving stochastic equations with variable delays and random Jump magnitudes
    Wei, Mao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2569 - 2580
  • [25] Optimal error estimate for semi-implicit space-time discretization for the equations describing incompressible generalized Newtonian fluids
    Berselli, Luigi C.
    Diening, Lars
    Ruzicka, Michael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2015, 35 (02) : 680 - 697
  • [26] Error Analysis of the Semi-Implicit Four-Step Fractional Scheme and Adaptive Finite Element Method for the Unsteady Incompressible Navier-Stokes Equation
    Yang, Xiaoyuan
    Wei, Wang
    Duan, Yuanyuan
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2009, 11 (03) : 461 - 480
  • [27] Rate of convergence of a semi-implicit time euler scheme for a 2D bénard-boussinesq model
    Bessaih, Hakima
    Millet, Annie
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [28] Analysis of a semi-implicit and structure-preserving finite element method for the incompressible MHD equations with magnetic-current formulation
    Zhang, Xiaodi
    Li, Meng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 128
  • [29] High order semi-implicit weighted compact nonlinear scheme for the full compressible Euler system at all Mach numbers
    Jiang, Yan-Qun
    Zhou, Shu-Guang
    Hu, Ying-Gang
    Zhang, Xu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 109 : 125 - 139
  • [30] Stability of Constant and Variable Coefficient Semi-Implicit Schemes for the Fully Elastic System of Euler Equations in the Case of Steep Slopes
    Burgot, Thomas
    Auger, Ludovic
    Benard, Pierre
    MONTHLY WEATHER REVIEW, 2023, 151 (05) : 1269 - 1286