Topic Modelling Meets Deep Neural Networks: A Survey

被引:0
|
作者
Zhao, He [1 ]
Dinh Phung [1 ,2 ]
Viet Huynh [1 ]
Jin, Yuan [1 ]
Du, Lan [1 ]
Buntine, Wray [1 ]
机构
[1] Monash Univ, Dept Data Sci & Artificial Intelligence, Melbourne, Vic, Australia
[2] VinAI Res, Hanoi, Vietnam
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Topic modelling has been a successful technique for text analysis for almost twenty years. When topic modelling met deep neural networks, there emerged a new and increasingly popular research area, neural topic models, with nearly a hundred models developed and a wide range of applications in neural language understanding such as text generation, summarisation and language models. There is a need to summarise research developments and discuss open problems and future directions. In this paper, we provide a focused yet comprehensive overview of neural topic models for interested researchers in the AI community, so as to facilitate them to navigate and innovate in this fast-growing research area. To the best of our knowledge, ours is the first review on this specific topic.
引用
收藏
页码:4713 / 4720
页数:8
相关论文
共 50 条
  • [11] Modelling cognitive flexibility with deep neural networks
    Sandbrink, Kai
    Summerfield, Christopher
    CURRENT OPINION IN BEHAVIORAL SCIENCES, 2024, 57
  • [12] Deep Neural Networks and Tabular Data: A Survey
    Borisov, Vadim
    Leemann, Tobias
    Sessler, Kathrin
    Haug, Johannes
    Pawelczyk, Martin
    Kasneci, Gjergji
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7499 - 7519
  • [13] A Survey of Accelerator Architectures for Deep Neural Networks
    Chen, Yiran
    Xie, Yuan
    Song, Linghao
    Chen, Fan
    Tang, Tianqi
    ENGINEERING, 2020, 6 (03) : 264 - 274
  • [14] Survey on Deep Convolutional Neural Networks in Mammography
    Abdelhafiz, Dina
    Nabavi, Sheida
    Ammar, Reda
    Yang, Clifford
    2017 IEEE 7TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL ADVANCES IN BIO AND MEDICAL SCIENCES (ICCABS), 2017,
  • [15] A survey of quantization methods for deep neural networks
    Yang C.
    Zhang R.
    Huang L.
    Ti S.
    Lin J.
    Dong Z.
    Chen S.
    Liu Y.
    Yin X.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2023, 45 (10): : 1613 - 1629
  • [16] A survey of model compression for deep neural networks
    Li J.-Y.
    Zhao Y.-K.
    Xue Z.-E.
    Cai Z.
    Li Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (10): : 1229 - 1239
  • [17] Accelerating Deep Neural Networks implementation: A survey
    Dhouibi, Meriam
    Ben Salem, Ahmed Karim
    Saidi, Afef
    Ben Saoud, Slim
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2021, 15 (02): : 79 - 96
  • [18] A Survey of Attacks and Defenses for Deep Neural Networks
    Machooka, Daniel
    Yuan, Xiaohong
    Esterline, Albert
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 254 - 261
  • [19] A Survey on Evolutionary Construction of Deep Neural Networks
    Zhou, Xun
    Qin, A. K.
    Gong, Maoguo
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (05) : 894 - 912
  • [20] Model Compression for Deep Neural Networks: A Survey
    Li, Zhuo
    Li, Hengyi
    Meng, Lin
    COMPUTERS, 2023, 12 (03)