Fermionic anyons: Entanglement and quantum computation from a resource-theoretic perspective

被引:0
|
作者
Tosta, Allan [1 ,2 ]
Lourenco, Antonio C. [3 ]
Brod, Daniel [4 ]
Iemini, Fernando [4 ,5 ]
Debarba, Tiago [6 ,7 ]
机构
[1] Univ Fed Rio De Janeiro, Inst Fis, Caixa Postal 68528, BR-21941972 Rio De Janeiro, RJ, Brazil
[2] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[3] Univ Iowa, Dept Phys & Astron, Iowa City, IA 52242 USA
[4] Univ Fed Fluminense, Inst Fis, BR-24210346 Niteroi, Brazil
[5] Johannes Gutenberg Univ Mainz, Inst Phys, D-55099 Mainz, Germany
[6] Univ Tecnol Fed Parana UTFPR, Dept Acad Ciencias Nat, Campus Cornelio Procopio,Ave Alberto Carazzai 1640, BR-86300000 Cornelio Procopio, Parana, Brazil
[7] Tech Univ Wien, Atom Inst, Stadionallee 2, A-1020 Vienna, Austria
基金
欧洲研究理事会;
关键词
FRACTIONAL STATISTICS; BOSE-GAS; ALGEBRAS; VIEW;
D O I
10.1103/PhysRevA.110.L010404
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum computational models can be approached via the lens of resources needed to perform computational tasks, where a computational advantage is achieved by consuming specific forms of quantum resources, or, conversely, resource-free computations are classically simulable. Can we similarly identify quantum computational resources in the setting of more general quasi-particle statistics? In this work, we develop a framework to characterize the separability of a specific type of one-dimensional quasiparticle known as a fermionic anyon. As we evince, the usual notion of partial trace fails in this scenario, so we build the notion of separability through a fractional Jordan-Wigner transformation, leading to an entanglement description of fermionic-anyon states. We apply this notion of fermionic-anyon separability and the unitary operations that preserve it, mapping it to the free resources of matchgate circuits. We also identify how entanglement between two qubits encoded in a dual-rail manner, as standard for matchgate circuits, corresponds to the notion of entanglement between fermionic anyons.
引用
收藏
页数:6
相关论文
共 32 条