A Lightweight Remote Sensing Small Target Image Detection Algorithm Based on Improved YOLOv8

被引:9
|
作者
Nie, Haijiao [1 ]
Pang, Huanli [1 ]
Ma, Mingyang [1 ]
Zheng, Ruikai [1 ]
机构
[1] Changchun Univ Technol, Sch Comp Sci & Engn, Changchun 130012, Peoples R China
关键词
small object detection; remote sensing image; YOLOv8n; HPANet; SSFF;
D O I
10.3390/s24092952
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In response to the challenges posed by small objects in remote sensing images, such as low resolution, complex backgrounds, and severe occlusions, this paper proposes a lightweight improved model based on YOLOv8n. During the detection of small objects, the feature fusion part of the YOLOv8n algorithm retrieves relatively fewer features of small objects from the backbone network compared to large objects, resulting in low detection accuracy for small objects. To address this issue, firstly, this paper adds a dedicated small object detection layer in the feature fusion network to better integrate the features of small objects into the feature fusion part of the model. Secondly, the SSFF module is introduced to facilitate multi-scale feature fusion, enabling the model to capture more gradient paths and further improve accuracy while reducing model parameters. Finally, the HPANet structure is proposed, replacing the Path Aggregation Network with HPANet. Compared to the original YOLOv8n algorithm, the recognition accuracy of mAP@0.5 on the VisDrone data set and the AI-TOD data set has increased by 14.3% and 17.9%, respectively, while the recognition accuracy of mAP@0.5:0.95 has increased by 17.1% and 19.8%, respectively. The proposed method reduces the parameter count by 33% and the model size by 31.7% compared to the original model. Experimental results demonstrate that the proposed method can quickly and accurately identify small objects in complex backgrounds.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Target Detection Algorithm of Remote Sensing Image Based on Improved YOLOv5
    Li, Kunya
    Ou, Ou
    Liu, Guangbin
    Yu, Zefeng
    Li, Lin
    Computer Engineering and Applications, 2023, 59 (09) : 207 - 214
  • [22] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214
  • [23] Target Detection Algorithm for UAV Images Based on Improved YOLOv8
    改进 YOLOv8 的无人机航拍图像目标检测算法
    Liang, Yan (liangyan@cqupt.edu.cn), 2025, 61 (01) : 121 - 130
  • [24] Target Detection Algorithm Based on Improved YOLOv8 for Hynobius Amjiensis
    Huang, Sheng
    Shen, Jiaxiao
    Ling, Zaiying
    Wang, Xianting
    Zhang, Dengrong
    Wang, Jiapeng
    2024 5TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATION, ICCEA 2024, 2024, : 1257 - 1262
  • [25] Lightweight rail surface defect detection algorithm based on an improved YOLOv8
    Xu, CanYang
    Liao, Yingying
    Liu, Yongqiang
    Tian, Runliang
    Guo, Tao
    MEASUREMENT, 2025, 242
  • [26] Improved YOLOv8 Urban Vehicle Target Detection Algorithm
    Xu, Degang
    Wang, Shuangchen
    Wang, Zaiqing
    Yin, Kedong
    Computer Engineering and Applications, 2024, 60 (18) : 136 - 146
  • [27] GLU-YOLOv8: An Improved Pest and Disease Target Detection Algorithm Based on YOLOv8
    Yue, Guangbo
    Liu, Yaqiu
    Niu, Tong
    Liu, Lina
    An, Limin
    Wang, Zhengyuan
    Duan, Mingyu
    FORESTS, 2024, 15 (09):
  • [28] YOLOV8-MR: An Improved Lightweight YOLOv8 Algorithm for Tomato Fruit Detection
    Li, Xu
    Cai, Changhan
    Yang, Yue
    Song, Bo
    IEEE ACCESS, 2025, 13 : 48120 - 48131
  • [29] EDS-YOLOv8: An Improved Multiscale Vehicle Target Detection Algorithm Based on YOLOv8
    Xu, Degang
    Wang, Shuangchen
    Sun, Xiaole
    Yin, Kedong
    PROCEEDINGS OF THE 2024 3RD INTERNATIONAL SYMPOSIUM ON INTELLIGENT UNMANNED SYSTEMS AND ARTIFICIAL INTELLIGENCE, SIUSAI 2024, 2024, : 250 - 256
  • [30] An Improved YOLOv8 Detector for Multi-Scale Target Detection in Remote Sensing Images
    Yue, Min
    Zhang, Liqiang
    Zhang, Yujin
    Zhang, Haifeng
    IEEE ACCESS, 2024, 12 : 114123 - 114136