Integrated Convolutional and Graph Attention Neural Networks for Electroencephalography

被引:0
|
作者
Kang, Jae-eon [1 ]
Lee, Changha [1 ]
Lee, Jong-Hwan [1 ]
机构
[1] Korea Univ, Dept Brain & Cognit Engn, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Convolutional neural network; Electroencephalography; Emotion; Fatigue; Graph attention network; Motor imagery; MOTOR IMAGERY; EEG; CLASSIFICATION; EMOTION; GAMMA;
D O I
10.1109/BCI60775.2024.10480494
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the present study, we propose a novel deep neural network (DNN) model designed to enhance the performance and interpretability of DNN based on the attention module. The proposed EEG-Graph Attention Network (EEGAT) consists of the convolutional neural network (CNN) and graph attention network (GAT). We evaluated the EEGAT using three heterogeneous datasets: Fatigue, DEAP, and BCI Competition IV 2a. Convolutional kernels in the EEGAT extract temporal and spatial features from the minimally preprocessed EEG signals. The extracted spatiotemporal features were then constructed as node features of the GAT layers and subsequently updated. The proposed EEGAT outperformed the alternative DNN models without GAT across the datasets and enhanced the interpretability of the prediction performance.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Central Attention Mechanism for Convolutional Neural Networks
    Geng, Y.X.
    Wang, L.
    Wang, Z.Y.
    Wang, Y.G.
    IAENG International Journal of Computer Science, 2024, 51 (10) : 1642 - 1648
  • [42] Channel attention for quantum convolutional neural networks
    Budiutama, Gekko
    Daimon, Shunsuke
    Nishi, Hirofumi
    Kaneko, Ryui
    Ohtsuki, Tomi
    Matsushita, Yu-ichiro
    PHYSICAL REVIEW A, 2024, 110 (01)
  • [43] Visualization of Convolutional Neural Networks with Attention Mechanism
    Yuan, Meng
    Tie, Bao
    Lin, Dawei
    HUMAN CENTERED COMPUTING, HCC 2021, 2022, 13795 : 82 - 93
  • [44] Graph Attention Networks for Neural Social Recommendation
    Mu, Nan
    Zha, Daren
    He, Yuanye
    Tang, Zhihao
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1320 - 1327
  • [45] Understanding Attention and Generalization in Graph Neural Networks
    Knyazev, Boris
    Taylor, Graham W.
    Amer, Mohamed R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [46] Multimodal Classification with Deep Convolutional-Recurrent Neural Networks for Electroencephalography
    Tan, Chuanqi
    Sun, Fuchun
    Zhang, Wenchang
    Chen, Jianhua
    Liu, Chunfang
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 767 - 776
  • [47] Residual convolutional graph neural network with subgraph attention pooling
    Duan, Yutai
    Wang, Jianming
    Ma, Haoran
    Sun, Yukuan
    TSINGHUA SCIENCE AND TECHNOLOGY, 2022, 27 (04) : 653 - 663
  • [48] Residual Convolutional Graph Neural Network with Subgraph Attention Pooling
    Yutai Duan
    Jianming Wang
    Haoran Ma
    Yukuan Sun
    TsinghuaScienceandTechnology, 2022, 27 (04) : 653 - 663
  • [49] A Hybrid Model for Soybean Yield Prediction Integrating Convolutional Neural Networks, Recurrent Neural Networks, and Graph Convolutional Networks
    Ingole, Vikram S.
    Kshirsagar, Ujwala A.
    Singh, Vikash
    Yadav, Manish Varun
    Krishna, Bipin
    Kumar, Roshan
    COMPUTATION, 2025, 13 (01)
  • [50] Polynomial-based graph convolutional neural networks for graph classification
    Luca Pasa
    Nicolò Navarin
    Alessandro Sperduti
    Machine Learning, 2022, 111 : 1205 - 1237