Investigation into the mechanisms of Corrosion-Induced rolling contact fatigue crack initiation and propagation in pearlitic rails

被引:3
|
作者
Wang, Kai [1 ,2 ]
Bai, Taoshuo [1 ,2 ]
Xu, Jingmang [1 ,2 ]
Zhu, Hui [1 ,2 ]
Qian, Yao [1 ,2 ]
Wang, Xuetong [1 ,2 ]
Chen, Rong [1 ,2 ]
Wang, Ping [1 ,2 ]
机构
[1] Southwest Jiaotong Univ, MOE Key Lab High Speed Railway Engn, Chengdu 610031, Peoples R China
[2] Southwest Jiaotong Univ, Sch Civil Engn, Chengdu 610031, Peoples R China
基金
中国国家自然科学基金;
关键词
Corrosion Fatigue; Pearlitic Rail; Rolling Contact Fatigue Crack; Damage Characterization; MICROSTRUCTURE;
D O I
10.1016/j.engfailanal.2024.108614
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Corrosion stands as a pivotal causative agent for the initiation and propagation of rolling contact fatigue (RCF) cracks on rail surfaces. This study aims to scientifically delineate the corrosion fatigue behavior of U75V rails. The study identifies the presence of oxidative corrosion and graphitization on the rail surface. Carbides near the rail surface cause stress concentration, reducing the rail's RCF residence. Oxide corrosion engenders internal oxide inclusions within cracks, expediting RCF crack propagation. Furthermore, grain refinement and discordant deformation between soft and hard grains near the rail surface give rise to sub-surface microporosity and microcracking. These findings advance our comprehension of rail RCF and offer insights for guiding rail maintenance and informing new rail design strategies.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Comparison of wear and rolling contact fatigue behaviours of bainitic and pearlitic rails under various rolling-sliding conditions
    Hu, Y.
    Guo, L. C.
    Maiorino, M.
    Liu, J. P.
    Ding, H. H.
    Lewis, R.
    Meli, E.
    Rindi, A.
    Liu, Q. Y.
    Wang, W. J.
    WEAR, 2020, 460
  • [32] Numerical simulation of rolling contact fatigue crack growth in rails with the rail bending and the frictional contact
    Mai, S. H.
    Gravouil, A.
    Nguyen-Tajan, M. L.
    Trolle, B.
    ENGINEERING FRACTURE MECHANICS, 2017, 174 : 196 - 206
  • [33] Subsurface crack propagation in rolling contact fatigue of sintered alloy
    Miyashita, Y
    Yoshimura, Y
    Xu, JQ
    Horikoshi, M
    Mutoh, Y
    JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 2003, 46 (03) : 341 - 347
  • [34] Thermomechanical effects on crack propagation in rolling contact fatigue failure
    Goshima, T
    JOURNAL OF THERMAL STRESSES, 2003, 26 (06) : 615 - 639
  • [35] On the influence of secondary branches on crack propagation in rolling contact fatigue
    Zaid, Mael
    Doquet, Veronique
    Chiaruttini, Vincent
    Depouhon, Pierre
    Bonnand, Vincent
    Pacou, Didier
    INTERNATIONAL JOURNAL OF FATIGUE, 2024, 182
  • [36] Very early stage rolling contact fatigue crack growth in pearlitic rail steels
    Garnham, J. E.
    Davis, C. L.
    WEAR, 2011, 271 (1-2) : 100 - 112
  • [37] Rolling contact fatigue crack propagation in nitrided alloyed steels
    Le, Marion
    Ville, Fabrice
    Kleber, Xavier
    Buffiere, Jean-Yves
    Cavoret, Jerome
    Sainte-Catherine, Marie-Christine
    Briancon, Laurence
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2017, 231 (09) : 1192 - 1208
  • [38] Influence of Inhibitor Concentration on Corrosion Fatigue Crack Initiation and Propagation
    Zhengfu WANG
    Jin LI
    Jianqiu WANG and Wei KE(Corrosion Science Laboratory
    Journal of Materials Science & Technology, 1995, (01) : 67 - 70
  • [39] Fatigue crack initiation and propagation under cyclic contact loading
    Fajdiga, G.
    Sraml, M.
    ENGINEERING FRACTURE MECHANICS, 2009, 76 (09) : 1320 - 1335
  • [40] Assessment of conditions for initiation of cracks in the heads of railway rails due to rolling contact fatigue
    Ringsberg, JW
    Josefson, BL
    FATIGUE '99: PROCEEDINGS OF THE SEVENTH INTERNATIONAL FATIGUE CONGRESS, VOLS 1-4, 1999, : 2597 - 2602