Hyperspectral image classification based on adaptive spectral feature decoupling with global local feature fusion network

被引:1
|
作者
Zhao, Yunji [1 ]
Song, Nailong [1 ]
Bao, Wenming [1 ]
机构
[1] Henan Polytech Univ, Sch Elect Engn & Automat, Henan Int Joint Lab Direct Dr & Control Intelligen, Jiaozuo, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive feature fusion; Deep learning (DL); Global local feature fusion network (GLF2Net); Hyperspectral image (HSI) classification;
D O I
10.1007/s12145-024-01415-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Deep learning-based methods are widely used in hyperspectral image (HSI) classification and have achieved excellent classification performance. However, hyperspectral data from different categories exhibit strong nonlinear coupling, which results in low spatial distinguishability between samples from different categories. Under the condition of limited sample size, how to extract spectral-spatial features and reduce the coupling of hyperspectral data from different categories is the key to achieving high-precision classification. Some methods based on Convolutional Neural Networks (CNN) tend to focus on local information within hyperspectral cubes. Transformers have excellent performance in modeling global dependencies between sequences. To solve the above problems, this paper proposes a global local feature fusion network (GLF2Net) for hyperspectral classification. To effectively integrate global information, this method introduces frequency domain statistical methods into the field of hyperspectral image classification. Firstly, this paper utilizes Fast Fourier Transform (FFT) to obtain frequency domain information from HSI data. Then, an improved adaptive 13-dimensional frequency domain statistical feature is applied as a supplement to the information after Principal Component Analysis (PCA) dimensionality reduction. To fully capture local-global hyperspectral features from HSI data, a dual-branch structure with a Transformer encoder Convolution Mixer Branch (TCM) and a CNN Branch is designed. Through extensive experiments on real HSI datasets, it is proven that the classification performance of GLF2Net is superior to several classic HSI classification methods.
引用
收藏
页码:4619 / 4637
页数:19
相关论文
共 50 条
  • [31] Hyperspectral Image Classification Method Based on Image Reconstruction Feature Fusion
    Liu Jiamin
    Chao, Zheng
    Zhang Limei
    Zou Zehua
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (09):
  • [32] Spectral similarity-based feature for hyperspectral image classification
    Wang, Ke
    Xiao, Jian
    ELECTRONICS LETTERS, 2023, 59 (05)
  • [33] Review of Hyperspectral Image Classification Based on Feature Fusion Method
    Liu Yuzhen
    Zhu Zhenzhen
    Ma Fei
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (04)
  • [34] Local-Global Feature Fusion Network for Efficient Hyperspectral Image Super-Resolution
    Xu, Jingran
    Zhao, Jiankang
    Cui, Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [35] MTFFN: Multimodal Transfer Feature Fusion Network for Hyperspectral Image Classification
    Yan, Huaiping
    Zhang, Erlei
    Wang, Jun
    Leng, Chengcai
    Peng, Jinye
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [36] Hyperspectral Image Classification Based on Multi-Scale Feature Fusion Residual Network
    Deng Ziqing
    Wang Yang
    Zhang Bing
    Ding Zhao
    Bian Lifeng
    Yang Chen
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (18)
  • [37] Spectral spatial joint feature based convolution neural network for hyperspectral image classification
    Kumar Pathak, Diganta
    Kumar Kalita, Sanjib
    Kumar Bhattacharya, Dhruba
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (03):
  • [38] Hyperspectral Image Classification Based on Interactive Transformer and CNN With Multilevel Feature Fusion Network
    Yang, Hao
    Yu, Haoyang
    Zheng, Ke
    Hu, Jiaochan
    Tao, Tingting
    Zhang, Qiang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [39] Feature Fusion Network Model Based on Dual Attention Mechanism for Hyperspectral Image Classification
    Cui, Ying
    Li, WenShan
    Chen, Liwei
    Wang, Liguo
    Jiang, Jing
    Gao, Shan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [40] From Local to Global: Class Feature Fused Fully Convolutional Network for Hyperspectral Image Classification
    Liu, Qian
    Wu, Zebin
    Jia, Xiuping
    Xu, Yang
    Wei, Zhihui
    REMOTE SENSING, 2021, 13 (24)