Movie recommendation based on ALS collaborative filtering recommendation algorithm with deep learning model

被引:3
|
作者
Li, Ni [1 ,3 ]
Xia, Yinshui [2 ]
机构
[1] Ningbo Univ Finance&Econ, Xiangshan Film Acad, Ningbo 315175, Peoples R China
[2] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo 315211, Peoples R China
[3] Macau Univ Sci & Technol, Fac Humanities & Arts, Macau 999078, Peoples R China
关键词
Movie recommendation; User preference; ALS; Collaborative filtering; Deep learning;
D O I
10.1016/j.entcom.2024.100715
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Development of recommender systems has recently emerged as a prominent study field that has drawn the attention of several scientists and researchers worldwide. Various fields, such as music, movies, books, news, search queries, and commercial goods, employ recommender systems. One of the well -liked and effective RS strategies is the collaborative filtering algorithm, which seeks out users who are quite similar to active one to propose products. This study suggests a unique method for recommending films based on analysis of user preference data that combines ALS collaborative filtering with deep learning techniques. The input in this case is gathered as web data based on previously performed user searches and then processed for noise reduction and normalisation. Convolutional multimodal auto multilayer graph with ALS collaborative filtering (CMAMG_ALSCF) was used to classify this processed data according to user evaluations and interests. Movies that are related to the interests of users are recommended by examining the similarity between users and other users or the similarity between movies and other movies. For several movie recommendation datasets, experimental analysis is done in terms of training accuracy, validation accuracy, RMSE, and average precision.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Item-Based Collaborative Filtering in Movie Recommendation in Real time
    Kharita, Mukesh Kumar
    Kumar, Atul
    Singh, Pardeep
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 340 - 342
  • [42] Multi-model deep learning approach for collaborative filtering recommendation system
    Aljunid, Mohammed Fadhel
    Huchaiah, Manjaiah Doddaghatta
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2020, 5 (04) : 268 - 275
  • [43] A hybrid book recommendation model using deep learning, collaborative, and content filtering
    Cuadros, Eduard Gilberto Puerto
    REVISTA GENERAL DE INFORMACION Y DOCUMENTACION, 2024, 34 (01):
  • [44] A Collaborative Filtering Recommendation Model Based on HMM
    Huang, Guangqiu
    Zhao, Yongmei
    SEVENTH WUHAN INTERNATIONAL CONFERENCE ON E-BUSINESS, VOLS I-III, 2008, : 273 - 278
  • [45] Recommendation Based on Collaborative Filtering by Convolution Deep Learning Model Based on Label Weight nearest Neighbor
    Zhang, Weiwei
    Liu, Fangai
    Jiang, Lu
    Xu, Daomeng
    2017 10TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 2, 2017, : 504 - 507
  • [46] A Clustering-Based Collaborative Filtering Recommendation Algorithm via Deep Learning User Side Information
    Zhao, Chonghao
    Shi, Xiaoyu
    Shang, Mingsheng
    Fang, Yiqiu
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT II, 2020, 12343 : 331 - 342
  • [47] Collaborative filtering recommendation algorithm based on graph theory
    Department of Information and Engineering, Yanshan University, Qinhuangdao 066000, China
    不详
    J. Comput. Inf. Syst., 2007, 5 (1783-1788): : 1783 - 1788
  • [48] Collaborative Filtering Recommendation Algorithm based on Trust Propagation
    Duan, Miao
    INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS, 2015, 9 (07): : 99 - 107
  • [49] A Collaborative filtering recommendation algorithm based on Domain Knowledge
    Xiao Min
    Zhang Hongfei
    Yu Xiaogao
    PROCEEDINGS OF THE 2008 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN, VOL 2, 2008, : 220 - +
  • [50] Collaborative filtering recommendation algorithm based on sample reduction
    Gao, Linqi
    Li, Congdong
    DCABES 2006 PROCEEDINGS, VOLS 1 AND 2, 2006, : 894 - 897