Enhancing lithium storage by reticulated RGO as a buffer layer in silicon-carbon composites

被引:4
|
作者
Wang, Jie [1 ]
Ding, Wenfei [1 ]
Yin, Jing [1 ]
Xu, Lan [1 ,2 ]
机构
[1] Soochow Univ, Coll Text & Engn, Natl Engn Lab Modern Silk, 199 Ren Ai Rd, Suzhou 215123, Peoples R China
[2] Soochow Univ, Jiangsu Engn Res Ctr Text Dyeing & Printing Energy, Suzhou 215123, Peoples R China
基金
中国国家自然科学基金;
关键词
Coaxial electrospinning; Lithium-ion battery; Graphene oxide; Hierarchical structure; Silicon-carbon composite; HIGH-ENERGY; ION BATTERIES; ANODES; PERFORMANCE; NANOPARTICLES; FIBERS; ELECTRODE; CATHODES;
D O I
10.1016/j.est.2024.113243
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To improve the capacity and extend the lifespan of lithium-ion batteries, silicon-carbon composite anode materials have been extensively researched in recent years. This work presented a method of using reticulated reduced graphene oxide (RGO) as a buffer layer for silicon-carbon anode materials. It involved initially loading reticulated graphene oxide (GO) onto the surface of silicon nanoparticles with a SiOx x shell (Si@SiOx) x ) to obtain a hierarchical structured Si@SiOx@GO x @GO nanoparticles, and then embedding them into the interior of core-shell nanofibers using coaxial electrospinning technology. After carbonization, the fabricated core-shell nanofibers formed a layered porous carbon framework (Si@SiOx@RGO-X/HPCNFs), x @RGO-X/HPCNFs), where GO was reduced to RGO. During the charging and discharging cycles, RGO provided mechanical strength and flexible buffering for the volume expansion of silicon-based nanoparticles. Furthermore, the formation of Si-O-C covalent bonds established a strong and efficient contact/adhesion between silicon oxide and graphene, mitigating potential detachment issues even under high-rate cycling. Consequently, the Si@SiOx@RGO-2/HPCNFs x @RGO-2/HPCNFs anode exhibited a significant reversible capacity (1041.6 mAh g- 1 ) after 100 cycles at 100 mA g- 1 , along with excellent high-rate performance and long-term cycling stability.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Peculiarities of graphene layer formation from amorphous carbon and silicon-carbon films
    Il'ichev, E. A.
    Kirilenko, E. P.
    Petrukhin, G. N.
    Rychkov, G. S.
    Sakharov, O. A.
    Khamdokhov, E. Z.
    Chernyavskaya, E. S.
    Shupegin, M. L.
    Shchekin, A. A.
    TECHNICAL PHYSICS LETTERS, 2014, 40 (01) : 52 - 54
  • [22] Electrochemical Characteristics of Silicon-carbon Composite Anodes for Lithium Rechargeable Batteries
    Lee, Jaeho
    Won, Sora
    Shim, Joongpyo
    Park, Gyungse
    Sun, Ho-Jung
    Lee, Hong-Ki
    TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2014, 15 (04) : 193 - 197
  • [23] Modulating porous silicon-carbon anode stability: Carbon/silicon carbide semipermeable layer mitigates silicon-fluorine reaction and enhances lithium-ion transport
    Zhang, Baoguo
    Wu, Lin
    Hu, Ya
    Yang, Xiaoyu
    Liu, Ying
    Li, Jingwang
    Tang, Ming
    Chen, Rongsheng
    Ma, Feng
    Wang, Jiayi
    Wang, Xin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 674 : 643 - 652
  • [24] Enhancing Lithium-Ion Batteries with a 3D Conductive Network Silicon-Carbon Nanotube Composite Anode
    Wang, Yuru
    Zeng, Zhihua
    Liu, Yong
    Huang, Gang
    Zhang, Pan
    Ma, Xiaodong
    Gao, Fan
    Zhang, Ziqiang
    Wang, Ye
    Wang, Yanqing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (49) : 67791 - 67802
  • [25] Double-buffer silicon-carbon anode material by a dynamic self-assembly process for lithium-ion batteries
    Liu, Fan
    Liu, Yanxia
    Wang, Enyang
    Ruan, Jingjing
    Chen, Shimou
    ELECTROCHIMICA ACTA, 2021, 393
  • [26] Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites
    Saint, Juliette
    Morcrette, Mathieu
    Larcher, Dominique
    Laffont, Lydia
    Beattie, Shane
    Peres, Jean-Paul
    Talaga, David
    Couzi, Michel
    Tarascon, Jean-Marie
    ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (11) : 1765 - 1774
  • [27] Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries
    Si, Q.
    Matsui, M.
    Horiba, T.
    Yamamoto, O.
    Takeda, Y.
    Seki, N.
    Imanishi, N.
    JOURNAL OF POWER SOURCES, 2013, 241 : 744 - 750
  • [28] Research on Lithium Storage Performance of MoS2/rGO Composites
    Wang, Yuyang
    Ge, Tao
    Zhan, Xinju
    Guo, Laigong
    Liu, Song
    Cheng, Qian
    Deng, Yifeng
    CHEMISTRYSELECT, 2024, 9 (30):
  • [29] LIGHT-ACTIVATED CHARGE STORAGE IN AMORPHOUS SILICON-CARBON FILMS
    KONENKAMP, R
    PAASCHE, SM
    APPLIED PHYSICS LETTERS, 1986, 49 (05) : 268 - 270
  • [30] Silicon-carbon unsaturated compounds .55. Synthesis and reactions of lithium silenolates, silicon analogs of lithium enolates
    Ohshita, J
    Masaoka, S
    Masaoka, Y
    Hasebe, H
    Ishikawa, M
    Tachibana, A
    Yano, T
    Yamabe, T
    ORGANOMETALLICS, 1996, 15 (14) : 3136 - 3146