Diagonals of self-adjoint operators II: non-compact operators

被引:1
|
作者
Bownik, Marcin [1 ,2 ]
Jasper, John [3 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Polish Acad Sci, Inst Math, Ul Abrahama 18, PL-81825 Sopot, Poland
[3] US Air Force, Inst Technol, Dept Math & Stat, Stat, Wright Patterson AFB, OH 45433 USA
关键词
Primary; 47B15; Secondary; 46C05; SCHUR-HORN THEOREM; PYTHAGOREAN THEOREM; CONVEXITY PROPERTIES; COMPACT-OPERATORS; MAJORIZATION; COMPRESSIONS; FRAMES;
D O I
10.1007/s00208-024-02910-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a self-adjoint operator T on a separable infinite-dimensional Hilbert space we study the problem of characterizing the set D(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}(T)$$\end{document} of all possible diagonals of T. For operators T with at least two points in their essential spectrum sigma ess(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{ess}(T)$$\end{document}, we give a complete characterization of D(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}(T)$$\end{document} for the class of self-adjoint operators sharing the same spectral measure as T with a possible exception of multiplicities of eigenvalues at the extreme points of sigma ess(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{ess}(T)$$\end{document}. We also give a more precise description of D(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {D}}(T)$$\end{document} for a fixed self-adjoint operator T, albeit modulo the kernel problem for special classes of operators. These classes consist of operators T for which an extreme point of the essential spectrum sigma ess(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{ess}(T)$$\end{document} is also an extreme point of the spectrum sigma(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (T)$$\end{document}. Our results generalize a characterization of diagonals of orthogonal projections by Kadison [38, 39], Blaschke-type results of M & uuml;ller and Tomilov [51] and Loreaux and Weiss [48], and a characterization of diagonals of operators with finite spectrum by the authors [15].
引用
收藏
页码:431 / 507
页数:77
相关论文
共 50 条