DESIGN AND CONTROL OF A BIO-INSPIRED INCHWORM ROBOT USING A NOVEL HELICAL ARTIFICIAL MUSCLE ACTUATOR

被引:0
|
作者
Quarnstrom, Joel [1 ]
Xiang, Yujiang [1 ]
机构
[1] Oklahoma State Univ, Mech & Aerosp Engn, Stillwater, OK 74078 USA
关键词
Helical Actuator; Inchworm Robot; Bio-inspired Robot; Artificial Muscle;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Bio-inspired robots provide solutions in many applications. Robots that can traverse and transport materials through confined areas are useful in disaster response, mining, mapping, and tunneling. The proposed robot is an inchworm-inspired robot that contracts and expands its body segments to move. It has spiky feet that are angled to only allow each foot to slide forward. It has a small frontal area compared to its length, and this allows it to travel through tight gaps or tunnels. Each segment uses two helical actuators as prismatic linkages to drive both forward movement and turning movement. These helical actuators transform the rotation of stepper motors into linear motion. Many linkage configurations were considered in designing this robot, and one without continuous singularities was selected. The robot stride consists of an extension phase and a contraction phase. In each phase, one foot is stationary, and one foot is moving. When each of the feet is in motion, the ground reaction force is assumed to be zero. The motion planning of the robot is designed so that the velocity and acceleration of each of the robot's rigid bodies is zero at the beginning and end of each movement phase. In the future, this robot will be prototyped using mostly 3D printed components, and its control algorithm will be refined during testing.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Bio-inspired artificial muscle based on chemical sensors
    Ravalli, Andrea
    Rossi, Claudio
    Marrazza, Giovanna
    BIOSENSORS 2016, 2017, 27 : 161 - 162
  • [32] Robust Nonlinear Control Design for A Bio-inspired Robot Arm with Measurement Uncertainties
    Ma, Zhengxiang
    Chen, Tiejun
    Wang, Aihui
    2016 INTERNATIONAL CONFERENCE ON ADVANCED MECHATRONIC SYSTEMS (ICAMECHS), 2016, : 29 - 32
  • [33] Design and Simulation of Small Bio-Inspired Jumping Robot
    Ho, Thanhtam
    Choi, Sunghac
    Lee, Sangyoon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2010, 34 (09) : 1145 - 1151
  • [34] Design of a Bio-inspired Quadruped Robot with Scalable Torso
    Liu, Yixiang
    Bi, Qing
    Li, Yibin
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 455 - 460
  • [35] Design and Characterization of a Miniature Bio-Inspired Mobile Robot
    Velazquez, Ramiro
    Garzon-Castro, Claudia L.
    Acevedo, Mario
    Orvananos-Guerrero, Maria T.
    Ghavifekr, Amir A.
    2021 12TH INTERNATIONAL SYMPOSIUM ON ADVANCED TOPICS IN ELECTRICAL ENGINEERING (ATEE), 2021,
  • [36] DESIGN AND ANALYSIS OF A TENSEGRITY MECHANISM FOR A BIO-INSPIRED ROBOT
    Venkateswaran, Swaminath
    Furet, Matthieu
    Chablat, Damien
    Wenger, Philippe
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 5A, 2020,
  • [37] From neuromechanics to robot controllers: Bio-inspired design
    Revzen, Shai
    Full, Robert J.
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY A-MOLECULAR & INTEGRATIVE PHYSIOLOGY, 2009, 153A (02): : S136 - S136
  • [38] Design and Analysis of a Bio-inspired Flapping Wing Robot
    Moitra, Sourabh
    Kiran, J. V. Sai
    Raghavendra, G. Sai Guru
    Sudheer, A. P.
    PROCEEDINGS OF THE ADVANCES IN ROBOTICS (AIR'17), 2017,
  • [39] Morphological design of the bio-inspired reconfigurable HexaQuaBip robot
    Veinguertener, A.
    Hoinville, T.
    Bruneau, O.
    Fontaine, J. -G.
    MOBILE ROBOTICS-SOLUTIONS AND CHALLENGES, 2010, : 205 - 214
  • [40] Analysis of neural oscillator for bio-inspired robot control
    Zhang, D. G.
    Zhu, K. Y.
    Lan, L.
    2006 IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS, VOLS 1 AND 2, 2006, : 39 - +