Poster Abstract: Improving image reconstruction quality in ultrasonic tomography using deep neural networks

被引:0
|
作者
Kulisz, Monika [1 ]
Klosowski, Grzegorz [1 ]
Rymarczyk, Tomasz [2 ]
Niderla, Konrad [3 ]
Bednarczuk, Piotr [3 ]
机构
[1] Lublin Univ Technol, Fac Management, Lublin, Poland
[2] WSEI Univ, Inst Comp Sci & Innovat Technol, Ctr Res & Dev, Netrix SA, Lublin, Poland
[3] WSEI Univ, Inst Comp Sci & Innovat Technol, Lublin, Poland
关键词
ultrasound tomography; deep learning; image reconstruction; process tomography;
D O I
10.1145/3625687.3628389
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study aims to improve the resolution of reconstructed images from industrial ultrasonic tomography (UST) by determining the most effective neural network structure for solving the inverse problem based on the measurements taken. The study analyzed three types of neural networks: Artificial Neural Networks, Convolutional Neural Networks (CNNs) and a hybrid of CNNs and Long Short-Term Memory networks (LSTM). After evaluating the reconstructions and quality indicators, the CNN-LSTM combination provided the most accurate image reconstructions of the industrial ultrasound tomography, highlighting the importance of selecting an appropriate neural network to improve the resolution of the reconstructed images.
引用
收藏
页码:520 / 521
页数:2
相关论文
共 50 条
  • [21] Electrical Impedance Tomography Image Reconstruction Based on Neural Networks
    Bianchessi, Andre
    Akamine, Rodrigo H.
    Duran, Guilherme C.
    Tanabi, Naser
    Sato, Andre K.
    Martins, Thiago C.
    Tsuzuki, Marcos S. G.
    IFAC PAPERSONLINE, 2020, 53 (02): : 15946 - 15951
  • [22] A new approach to image reconstruction in positron emission tomography using artificial neural networks
    Bevilacqua, A
    Bollini, D
    Campanini, R
    Lanconelli, N
    Galli, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 1998, 9 (01): : 71 - 85
  • [23] Improving Generalization of Deep Networks for Inverse Reconstruction of Image Sequences
    Ghimire, Sandesh
    Kumar, Prashnna
    Dhamala, Gyawali Jwala
    Sapp, John L.
    Horacek, Milan
    Wang, Linwei
    INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2019, 2019, 11492 : 153 - 166
  • [24] Impedance image reconstruction using neural networks
    Nejatali, A
    Ciric, IR
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 1726 - 1729
  • [25] Tomographic image reconstruction using neural networks
    Rodrigues, RGS
    Pelá, CA
    Roque, AC
    METMBS'00: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICS AND ENGINEERING TECHNIQUES IN MEDICINE AND BIOLOGICAL SCIENCES, VOLS I AND II, 2000, : 27 - 33
  • [26] ULTRASONIC TOMOGRAPHY - IMAGE RECONSTRUCTION ALGORITHMS
    Rahiman, Mohd Hafiz Fazalul
    Rahim, Ruzairi Abdul
    Rahim, Herlina Abdul
    Muji, Siti Zarina Mohd
    Mohamad, Elmy Johana
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2012, 8 (1B): : 527 - 538
  • [27] IMAGE RECONSTRUCTION ALGORITHMS FOR ULTRASONIC TOMOGRAPHY
    Rahiman, Mohd Hafiz Fazalul
    Rahim, Ruzairi Abdul
    Rahim, Herlina Abdul
    JURNAL TEKNOLOGI, 2011, 54
  • [28] Improving image reconstruction in electrical capacitance tomography based on deep learning
    Zhu, Hai
    Sun, Jiangtao
    Xu, Lijun
    Sun, Shijie
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS & TECHNIQUES (IST 2019), 2019,
  • [29] Optical Coherence Tomography Image Segmentation for Cornea Surgery using Deep Neural Networks
    Heo, Young Jin
    Park, Ikjong
    Kim, Ki Hean
    Kim, Myoung Joon
    Chung, Wan Kyun
    2018 15TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS (UR), 2018, : 14 - 18
  • [30] Accelerated Diffusion-Weighted MR Image Reconstruction Using Deep Neural Networks
    Aamir, Fariha
    Aslam, Ibtisam
    Arshad, Madiha
    Omer, Hammad
    JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 276 - 288