Distributions of coarse aggregate and steel fiber in ultra-high performance concrete: Migration behavior and correlation with compressive strength

被引:4
|
作者
Yao, Yiming [1 ,2 ]
Yang, Kaimeng [2 ]
Wu, Hongyu [2 ]
Cheng, Zhao [1 ,2 ]
Liu, Jianzhong [3 ]
Wang, Jingquan [1 ,2 ,4 ]
Zhong, Rui [5 ]
机构
[1] State Key Lab Safety Durabil & Hlth Operat Long Sp, Nanjing 210096, Peoples R China
[2] Southeast Univ, Bridge Engn Res Ctr, Nanjing 210096, Peoples R China
[3] Jiangsu Sobute New Mat Co Ltd, State Key Lab High Performance Civil Engn Mat, Nanjing 211103, Peoples R China
[4] Jiangsu Univ, Fac Civil Engn & Mech, Zhenjiang 212013, Peoples R China
[5] Missouri Univ Sci & Technol, Dept Civil Architectural & Environm Engn, Rolla, MO 65401 USA
来源
基金
中国国家自然科学基金;
关键词
UHPC; Coarse aggregate; Migration behavior of different phases; Volume stability; Compressive strength; SELF-COMPACTING CONCRETE; SEGREGATION; STABILITY;
D O I
10.1016/j.jobe.2024.110128
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The vertical distribution of coarse aggregates and steel fibers in ultra-high performance concrete (UHPC) both at fresh and hardened states was investigated to unveil their migration behavior and the correlation with compressive strength. To fulfill this purpose, customized design of specimens and tailored test method were developed. Specimens with two sizes (3-5 mm and 5-10 mm) and varying content (0-50 %) of coarse aggregate and different volume fraction of steel fiber (0-2 %) were proportioned. It was found that higher amount of coarse aggregates was located in the lower part whereas more steel fibers and voids were observed in the upper region of the specimens. Increasing the content of coarse aggregates resulted in worsened uniformness of its distribution, while incorporating steel fibers up to 2 % by volume imposed negligible effects on the heterogeneity. Migration of different phases primarily occurred during the fresh state. Compressive strength of the specimens at the middle layers was up to 30 % higher than those at the top and bottom layers. The inferior compressive strength was primarily ascribed to the worsened distribution of CAs and higher voids in the top layer.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Scale Effect of Cubic Compressive Strength of Ultra-high Performance Concrete
    Su, Jie
    Liu, Wei
    Shi, Caijun
    Fang, Zhi
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (02): : 305 - 311
  • [42] A New Insight into the Design Compressive Strength of Ultra-High Performance Concrete
    Pourbaba, Masoud
    Chakraborty, Rajesh
    Pourbaba, Majid
    Belarbi, Abdeldjelil
    Yeon, Jung Heum
    BUILDINGS, 2023, 13 (12)
  • [43] Effect of Specimen Geometry on the Compressive Strength of Ultra-High Performance Concrete
    Riedel, Philipp
    Leutbecher, Torsten
    Piotrowski, Siemon
    Heese, Christian
    BETON- UND STAHLBETONBAU, 2018, 113 (08) : 598 - 607
  • [44] Strength and abrasion resistance of ultra-high strength steel fiber reinforced concrete
    Febrillet, Norma
    Kido, Akihiro
    Ito, Yukihiro
    Ishibashi, Kouji
    Transactions of the Japan Concrete Institute, 2000, 22 : 243 - 252
  • [45] Axial compressive behavior of ultra-high performance concrete confined by high-strength transverse reinforcements
    Ding, Yi
    Zhou, Zhen
    Wei, Yang
    Huang, Yiliang
    Tian, Huiwen
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 324
  • [46] Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP
    Wang, Weiqiang
    Wu, Chengqing
    Liu, Zhongxian
    Si, Honglan
    COMPOSITE STRUCTURES, 2018, 204 : 419 - 437
  • [47] Static Mechanical Properties and Microscopic Analysis of Hybrid Fiber Reinforced Ultra-High Performance Concrete with Coarse Aggregate
    Liu, Shengbing
    Zhang, Yonglei
    ADVANCES IN CIVIL ENGINEERING, 2022, 2022
  • [48] Proposed shear capacity equation for ultra-high performance fiber reinforced concrete beam containing coarse aggregate
    Smith, Abutu Simon John
    Xu, Gang
    STRUCTURES, 2023, 56
  • [49] Flexural behavior of ultra-high performance concrete filled high-strength steel tube
    Li, Jiayue
    Deng, Zongcai
    Sun, Tong
    STRUCTURAL CONCRETE, 2021, 22 (03) : 1688 - 1707
  • [50] Compressive and flexural behaviors of ultra-high strength concrete encased steel members
    Du, Yong
    Xiong, Ming-Xiang
    Zhu, Jian
    Liew, J. Y. Richard
    STEEL AND COMPOSITE STRUCTURES, 2019, 33 (06): : 849 - 864