A Real-Time, Robust Visual-Inertial Navigation System Tightly Coupled With GNSS and Barometer

被引:1
|
作者
Che, Yifan [1 ]
Dong, Jiuxiang [1 ]
机构
[1] Northeast Univ, Sch Informat Sci & Engn, Shenyang 110000, Liaoning, Peoples R China
关键词
Sensor systems; multisensor fusion; nonlinear optimization; robust state estimation; visual-inertial-GNSS-Barometer odometry; MULTISENSOR FUSION; VINS;
D O I
10.1109/LSENS.2024.3399552
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Visual-inertial navigation systems suffer from accmulated errors and poor robustness. This letter proposes a solution to address these challenges by fusing global navigation satellite system (GNSS) and barometer measurements. Barometer could provides higher measurement precision compared to GNSS in altitude. We have developed a "novel sensor" by creatively integrating measurements from GNSS and barometer. A nonlinear optimization method is used to tightly couple measurements of GNSS-Barometer (GB), visual and inertial information for real-time and robust state estimation. The proposed GB aided visual-inertial navigation system (GB-VINS) is evaluated on extensive large-scale urban driving datasets. GB-VINS demonstrates competitive performance compared with the existing state-of-the-art methods on publicly available datasets.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Panoramic Visual-Inertial SLAM Tightly Coupled with a Wheel Encoder
    Jiang, Fan
    Chen, Jiagang
    Ji, Shunping
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 182 : 96 - 111
  • [22] Panoramic Visual-Inertial SLAM Tightly Coupled with a Wheel Encoder
    Jiang, Fan
    Chen, Jiagang
    Ji, Shunping
    ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 182 : 96 - 111
  • [23] REDBEE: A Visual-Inertial Drone System for Real-Time Moving Object Detection
    Huang, Chong
    Chen, Peng
    Yang, Xin
    Cheng, Kwang-Ting
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 1725 - 1731
  • [24] Tightly Coupled Visual-Inertial Fusion for Attitude Estimation of Spacecraft
    Yi, Jinhui
    Ma, Yuebo
    Long, Hongfeng
    Zhu, Zijian
    Zhao, Rujin
    REMOTE SENSING, 2024, 16 (16)
  • [25] PROBE: Predictive Robust Estimation for Visual-Inertial Navigation
    Peretroukhin, Valentin
    Clement, Lee
    Giamou, Matthew
    Kelly, Jonathan
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3668 - 3675
  • [26] On-Manifold Preintegration for Real-Time Visual-Inertial Odometry
    Forster, Christian
    Carlone, Luca
    Dellaert, Frank
    Scaramuzza, Davide
    IEEE TRANSACTIONS ON ROBOTICS, 2017, 33 (01) : 1 - 21
  • [27] HybVIO: Pushing the Limits of Real-time Visual-inertial Odometry
    Seiskari, Otto
    Rantalankila, Pekka
    Kannala, Juho
    Ylilammi, Jerry
    Rahtu, Esa
    Solin, Arno
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 287 - 296
  • [28] An Improved Monocular Visual-Inertial Navigation System
    Sun, Tian
    Liu, Yong
    Wang, Yujie
    Xiao, Zhen
    IEEE SENSORS JOURNAL, 2021, 21 (10) : 11728 - 11739
  • [29] Real-Time Visual-Inertial Localization for Aerial and Ground Robots
    Oleynikova, Helen
    Burri, Michael
    Lynen, Simon
    Siegwart, Roland
    2015 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2015, : 3079 - 3085
  • [30] SIMULATION FRAMEWORK FOR A VISUAL-INERTIAL NAVIGATION SYSTEM
    Irmisch, Patrick
    Baumbach, Dirk
    Ernst, Ines
    Boerner, Anko
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1995 - 1999