Approaches to modeling interpersonal complementarity in intensive longitudinal data

被引:0
|
作者
Woods, William C. [1 ]
Wright, Aidan G. C. [2 ,3 ]
机构
[1] Univ Pittsburgh, Pittsburgh, PA USA
[2] Univ Michigan, Dept Psychol, Ann Arbor, MI USA
[3] Univ Michigan, Eisenberg Family Depress Ctr, Ann Arbor, MI USA
关键词
Contemporary integrative interpersonal theory; Complementarity; Social interaction; Multilevel modeling; BEHAVIOR;
D O I
10.1016/j.jrp.2024.104512
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Contemporary integrative interpersonal theory (CIIT) posits that successful social interactions are characterized by complementarity: correspondence in interpersonal warmth and reciprocity in interpersonal dominance. Interactions with high complementarity evoke more positive affect and less negative affect. Modeling complementarity is challenging because it requires capturing the interpersonal behavior of individuals along the two dimensions of warmth and dominance. This study compares three approaches-statistical interaction, multilevel response surface analysis, and Euclidean distance-for modeling complementarity across four datasets. The approaches varied in the consistency of findings and proportion of variance explained. Findings suggest the Euclidean approach for parsimony and theoretical coherence, whereas multilevel response surface analysis is preferable for comprehensively modeling the interplay of self and other on the interpersonal dimensions.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Mixture Modeling for Longitudinal Data
    Tang, Xiwei
    Qu, Annie
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2016, 25 (04) : 1117 - 1137
  • [42] Modelling agreement for binary intensive longitudinal data
    Vanbelle, Sophie
    Lesaffre, Emmanuel
    STATISTICAL MODELLING, 2023, 23 (02) : 127 - 150
  • [43] Comparison of Models for the Analysis of Intensive Longitudinal Data
    Asparouhov, Tihomir
    Muthen, Bengt
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (02) : 275 - 297
  • [44] Granger Causality Testing with Intensive Longitudinal Data
    Peter C. M. Molenaar
    Prevention Science, 2019, 20 : 442 - 451
  • [45] Applying Causal Discovery to Intensive Longitudinal Data
    Stevenson, Brittany L.
    Kummerfeld, Erich
    Merrill, Jennifer E.
    CAUSAL ANALYSIS WORKSHOP SERIES, VOL 160, 2021, 160 : 20 - +
  • [46] Granger Causality Testing with Intensive Longitudinal Data
    Molenaar, Peter C. M.
    PREVENTION SCIENCE, 2019, 20 (03) : 442 - 451
  • [47] Identifying duration criteria for eating-disorder remission and recovery through intensive modeling of longitudinal data
    De Young, Kyle P.
    Kambanis, P. Evelyna
    Bottera, Angeline R.
    Mancuso, Christopher
    Thomas, Jennifer J.
    Franko, Debra L.
    Herzog, David B.
    Walker, D. Catherine
    Anderson, Drew
    Eddy, Kamryn T.
    INTERNATIONAL JOURNAL OF EATING DISORDERS, 2020, 53 (08) : 1224 - 1233
  • [48] Interpersonal rigidity, hostility, and complementarity in musical bands
    OConnor, BP
    Dyce, J
    JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 1997, 72 (02) : 362 - 372
  • [49] COURSE 12: HARNESSING THE POWER OF FLUCTUATION: NEW HORIZONS IN MODELING INTRAINDIVIDUAL VARIABILITY WITH INTENSIVE LONGITUDINAL DATA
    Dunton, Genevieve F.
    Wang, Wei-Lin
    Hedeker, Donald
    ANNALS OF BEHAVIORAL MEDICINE, 2023, 57 : S19 - S19
  • [50] INTERPERSONAL COMPLEMENTARITY AND TIME OF INTERACTION IN FEMALE RELATIONSHIPS
    NOWICKI, S
    MANHEIM, S
    JOURNAL OF RESEARCH IN PERSONALITY, 1991, 25 (03) : 322 - 333