Mathematical modeling of dispersed CO2 dissolution in ionic liquids: Application to carbon capture

被引:3
|
作者
Amin, Parsa [1 ]
Memarian, Alireza [2 ]
Repo, Eveliina [1 ]
Andersson, Martin [4 ]
Mansouri, Seyed Soheil [5 ]
Zendehboudi, Sohrab [3 ]
Rezaei, Nima [1 ]
机构
[1] LUT Univ, LUT Sch Engn Sci, POB 20, Lappeenranta 53850, Finland
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB, Canada
[3] Mem Univ, Dept Proc Engn, St John, NF, Canada
[4] King Fahd Univ Petr & Minerals, Ctr Integrat Petr Res, Dhahran, Saudi Arabia
[5] Tech Univ Denmark, Dept Chem & Biochem Engn, Lyngby, Denmark
关键词
Carbon capture; Ionic liquids; Sparging; CFD modelling; Computer-aided design; CO2; CAPTURE; PRE-COMBUSTION; SOLUBILITY; DENSITY; TRICYANOMETHANIDE; DIFFUSIVITY; COMPOSITE; MIXTURES; PRESSURE; SYSTEMS;
D O I
10.1016/j.molliq.2024.124486
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develope a 2D computational fluid dynamic (CFD) model in COMSOL Multiphysics (R) to investigate CO2 absorption in an ionic liquid ([Bmim][TCM]). Factors such as pressure (1-20 bar), temperature (278-330 K), inlet gas velocity (0.0001-1 ms(-1) ), sparger radius to column diameter ratio (0.1-0.5), and column height to diameter ratio (1-3) are investigated. A quadratic model for absorption behavior (p-value < 0.0001 and R-2 > 0.98) is developed. Four sparger geometries are considered, and the optimal values for column height to diameter and sparger radius to column diameter are estimated. The maximum CO2 concentration is obtained at a pressure of 18.26 bar, temperature of 309.5 K, velocity of 0.825 ms(-1) , the sparger radius to column diameter of 0.414, and column height to diameter of 2.5.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] CO2 Capture in Wet and Dry Superbase Ionic Liquids
    S. F. Rebecca Taylor
    Corina McCrellis
    Claire McStay
    Johan Jacquemin
    Christopher Hardacre
    Maxime Mercy
    Robert G. Bell
    Nora H. de Leeuw
    Journal of Solution Chemistry, 2015, 44 : 511 - 527
  • [32] Tuning the Basicity of Ionic Liquids for Equimolar CO2 Capture
    Wang, Congmin
    Luo, Xiaoyan
    Luo, Huimin
    Jiang, De-en
    Li, Haoran
    Dai, Sheng
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (21) : 4918 - 4922
  • [33] An optimization approach for CO2 capture using ionic liquids
    Valencia-Marquez, Darinel
    Flores-Tlacuahuac, Antonio
    Vasquez-Medrano, Ruben
    JOURNAL OF CLEANER PRODUCTION, 2017, 168 : 1652 - 1667
  • [34] Mechanisms of CO2 capture in ionic liquids: a computational perspective
    Mercy, Maxime
    de Leeuw, Nora H.
    Bell, Robert G.
    FARADAY DISCUSSIONS, 2016, 192 : 479 - 492
  • [35] Amine-functionalized ionic liquids for CO2 capture
    Zhu, Xueying
    Chen, Zijiao
    Ai, Hongqi
    JOURNAL OF MOLECULAR MODELING, 2020, 26 (12)
  • [36] Iodine capture by ionic liquids and recovery by compressed CO2
    Chen, Yu
    Zhang, Fuguang
    Xue, Zhimin
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 223 : 202 - 208
  • [37] Recent Advances in CO2 Capture by Functionalized Ionic Liquids
    Pan, Mingguang
    Wang, Congmin
    ADVANCES IN CO2 CAPTURE, SEQUESTRATION, AND CONVERSION, 2015, 1194 : 341 - 369
  • [38] Challenges and for the utilisation of ionic liquids as solvents for CO2 capture
    Mota-Martinez, Maria T.
    Brandl, Patrick
    Hallett, Jason P.
    Mac Dowell, Niel
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2018, 3 (03): : 560 - 571
  • [39] Amine-functionalized ionic liquids for CO2 capture
    Xueying Zhu
    Zijiao Chen
    Hongqi Ai
    Journal of Molecular Modeling, 2020, 26
  • [40] State-of-the-Art of CO2 Capture with Ionic Liquids
    Ramdin, Mahinder
    de Loos, Theo W.
    Vlugt, Thijs J. H.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2012, 51 (24) : 8149 - 8177