Preparation and electrochemical performance of cellulose-based biomass-derived carbon materials

被引:0
|
作者
Zhang, Xuemin [1 ,2 ,3 ]
He, Guanyu [1 ,2 ,3 ]
Sun, Huan [1 ,2 ,3 ]
Cui, Wenqiang [1 ,2 ,3 ]
Song, Hongbin [1 ,2 ,3 ]
Li, Jinping [1 ,2 ,3 ]
Zheng, Jian [1 ,2 ,3 ]
机构
[1] Key Lab Multisupply Syst Solar Energy & Biomass, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Coll Energy & Power Engn, Lanzhou 730050, Peoples R China
[3] Collaborat Innovat Ctr Supporting Technol Northwes, Nanyang, Peoples R China
来源
关键词
Biomass-derived carbon materials; Corn stalk; Chemical activation; Structural characteristics; Electrochemical performance; ACTIVATED CARBON; ELECTRODE MATERIAL; FUNCTIONAL-GROUPS; SUPERCAPACITORS; CAPACITANCE; PYROLYSIS; GRAPHENE; GREEN;
D O I
10.1016/j.ijoes.2024.100617
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Biomass-derived carbon materials are regarded as an ideal precursor for activated carbon owing to their unique structure, widely used in energy storage applications. Porous biomass carbon materials were prepared by hightemperature carbonization and activation methods using corn stalk stem pith as the carbon source. The structures and morphology of biomass-derived carbon materials were also characterized and analyzed, and it was employed as the electrode material to study the electrochemical properties. The results showed that the specific surface area and pore volume increased with the increase of temperature under the action of the same activator. The activation degree of carbon materials by different activators showed obvious differences under the same temperature conditions, and the structure and properties of the carbon materials obtained by sodium hydroxide activation were better than those obtained by sodium bicarbonate activation. When the temperature was fixed at 900 degree celsius, the carbon materials obtained by sodium hydroxide activation showed the best structural characteristics and electrochemical properties, with the specific surface area up to 532.881 m(2).g(-1) and the microporous volume accounting for 76.266 % of the total pore volume. By cyclic voltammetry test, the specific capacity was 139 F.g(-1) at a scan rate of 10 mV.s(-1), and the electrochemical impedance was much smaller than the impedance of the product obtained by sodium bicarbonate activation. Meanwhile, the specific capacity remained basically unchanged after 1000 cycles of charging and discharging, with excellent cycling stability and electrochemical performance. The relevant results provide a new way for the efficient utilization and functionalization of biomass resources.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Preparation and performance comparison of cellulose-based activated carbon fibres
    Hina, Kanza
    Zou, Hantao
    Qian, Wu
    Zuo, Danying
    Yi, Changhai
    CELLULOSE, 2018, 25 (01) : 607 - 617
  • [22] Biomass-derived carbon materials for organic transformations
    Li Q.
    Song T.
    Yang Y.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40 (04): : 1966 - 1982
  • [23] Preparation and performance comparison of cellulose-based activated carbon fibres
    Kanza Hina
    Hantao Zou
    Wu Qian
    Danying Zuo
    Changhai Yi
    Cellulose, 2018, 25 : 607 - 617
  • [24] Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review
    Onfray, Christian
    Thiam, Abdoulaye
    MICROMACHINES, 2023, 14 (09)
  • [25] Eco-Friendly Preparation of Biomass-Derived Porous Carbon and Its Electrochemical Properties
    Wang, Junlong
    Zhang, Qi
    Deng, Meigen
    ACS OMEGA, 2022, 7 (26): : 22689 - 22697
  • [26] Biomass-derived porous carbon materials with NiS nanoparticles for high performance supercapacitors
    Yang, Huafang
    Tang, Yinghua
    Sun, Xiaoyan
    Liu, Quan
    Huang, Xiaogu
    Wang, Lixi
    Fu, Zhenxiao
    Zhang, Qitu
    Or, Siu Wing
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2017, 28 (19) : 14874 - 14883
  • [27] Preparation of green high-performance biomass-derived hard carbon materials from bamboo powder waste
    Yin, Tianqi
    Zhang, Zhengli
    Xu, Lizhi
    Li, Chuang
    Han, Dongdong
    CHEMISTRYOPEN, 2024, 13 (05)
  • [28] Biomass-derived porous carbon materials with NiS nanoparticles for high performance supercapacitors
    Huafang Yang
    Yinghua Tang
    Xiaoyan Sun
    Quan Liu
    Xiaogu Huang
    Lixi Wang
    Zhenxiao Fu
    Qitu Zhang
    Siu Wing Or
    Journal of Materials Science: Materials in Electronics, 2017, 28 : 14874 - 14883
  • [29] Biomass-derived nanostructured carbon materials for high-performance supercapacitor electrodes
    Ebrahimi, Mehrnaz
    Hosseini-Monfared, Hassan
    Javanbakht, Mehran
    Mahdi, Fatemeh
    BIOMASS CONVERSION AND BIOREFINERY, 2024, 14 (15) : 17363 - 17380
  • [30] Biomass-derived amorphous carbon materials and its application to conversion of biomass-derived carbohydrates and fatty acids
    Cho, Jin Ku
    Kim, Bora
    Jeong, Jaewon
    Shin, Seunghan
    Kim, Sangyong
    Lee, Kwan-Young
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245