New Results on the Ulam-Hyers-Mittag-Leffler Stability of Caputo Fractional-Order Delay Differential Equations

被引:2
|
作者
Tunc, Osman [1 ]
机构
[1] Van Yuzuncu Yil Univ, Baskale Vocat Sch, Dept Comp Programing, TR-65080 Van, Turkiye
关键词
delay differential equation; fractional order; Caputo fractional derivative; Ulam-Hyers-Mittag-Leffler stability;
D O I
10.3390/math12091342
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author considers a nonlinear Caputo fractional-order delay differential equation (CFrDDE) with multiple variable delays. First, we study the existence and uniqueness of the solutions of the CFrDDE with multiple variable delays. Second, we obtain two new results on the Ulam-Hyers-Mittag-Leffler (UHML) stability of the same equation in a closed interval using the Picard operator, Chebyshev norm, Bielecki norm and the Banach contraction principle. Finally, we present three examples to show the applications of our results. Although there is an extensive literature on the Lyapunov, Ulam and Mittag-Leffler stability of fractional differential equations (FrDEs) with and without delays, to the best of our knowledge, there are very few works on the UHML stability of FrDEs containing a delay. Thereby, considering a CFrDDE containing multiple variable delays and obtaining new results on the existence and uniqueness of the solutions and UHML stability of this kind of CFrDDE are the important aims of this work.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Mittag–Leffler Stability for Impulsive Caputo Fractional Differential Equations
    R. Agarwal
    S. Hristova
    D. O’Regan
    Differential Equations and Dynamical Systems, 2021, 29 : 689 - 705
  • [22] Hyers-Ulam-Rassias stability of fractional delay differential equations with Caputo derivative
    Benzarouala, Chaimaa
    Tunc, Cemil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (18) : 13499 - 13509
  • [23] Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel
    Liu, Kui
    Wang, JinRong
    Zhou, Yong
    O'Regan, Donal
    CHAOS SOLITONS & FRACTALS, 2020, 132 (132)
  • [24] Mittag–Leffler stability for a new coupled system of fractional-order differential equations on network
    Yang Gao
    Advances in Difference Equations, 2018
  • [25] On the Existence and Uniqueness of Solutions for Neutral-Type Caputo Fractional Differential Equations with Iterated Delays: Hyers-Ulam-Mittag-Leffler Stability
    Madamlieva, Ekaterina
    Konstantinov, Mihail
    MATHEMATICS, 2025, 13 (03)
  • [26] Mittag-Leffler Stability for Impulsive Caputo Fractional Differential Equations
    Agarwal, R.
    Hristova, S.
    O'Regan, D.
    DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2021, 29 (03) : 689 - 705
  • [27] ULAM-HYERS-RASSIAS MITTAG-LEFFLER STABILITY FOR THE DARBOUX PROBLEM FOR PARTIAL FRACTIONAL DIFFERENTIAL EQUATIONS
    Ben Makhlouf, Abdellatif
    Boucenna, Djalal
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2022, 51 (05) : 1541 - 1551
  • [28] On Hyers–Ulam Stability for Fractional Differential Equations Including the New Caputo–Fabrizio Fractional Derivative
    Yasemin Başcı
    Süleyman Öğrekçi
    Adil Mısır
    Mediterranean Journal of Mathematics, 2019, 16
  • [29] HYERS-ULAM-RASSIAS STABILITY OF κ-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS
    Yao, Hui
    Jin, Wenqi
    Dong, Qixiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (05): : 2903 - 2921
  • [30] Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel
    Khan, Aziz
    Khan, Hasib
    Gomez-Aguilar, J. F.
    Abdeljawad, Thabet
    CHAOS SOLITONS & FRACTALS, 2019, 127 : 422 - 427