On ergodicity of threshold ARMA(m, p, q) models

被引:0
|
作者
Bai, Qiang [1 ]
Ling, Shiqing [2 ]
机构
[1] ShanXi Univ Finance & Econ, Tai Yan, Peoples R China
[2] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
关键词
TAR model; Threshold model; TARMA model; Stationarity and ergodicity; GEOMETRIC ERGODICITY;
D O I
10.1007/s42081-024-00248-z
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The threshold ARMA model has been extensively studied in the literature. However, except for some special cases, its ergodicity is not clear up to now. This article provides a sufficient condition for the ergodicity of the general multiple threshold ARMA model.
引用
收藏
页码:667 / 675
页数:9
相关论文
共 50 条
  • [31] A simple neural network for ARMA(p, q) time series
    Hwarng, HB
    Ang, HT
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2001, 29 (04): : 319 - 333
  • [32] Sequential and non-sequential acceptance sampling plans for autocorrelated processes using ARMA(p,q) models
    M. S. Aminzadeh
    Computational Statistics, 2009, 24 : 95 - 111
  • [33] Sequential and non-sequential acceptance sampling plans for autocorrelated processes using ARMA(p,q) models
    Aminzadeh, M. S.
    COMPUTATIONAL STATISTICS, 2009, 24 (01) : 95 - 111
  • [34] Prediction of α-stable GARCH and ARMA-GARCH-M models
    Mohammadi, Mohammad
    JOURNAL OF FORECASTING, 2017, 36 (07) : 859 - 866
  • [35] ARMA(p,q)利率模型下的破产概率
    邹娓
    谢杰华
    南昌工程学院学报, 2009, 28 (03) : 19 - 24+36
  • [36] Functional Clustering of Periodic Transcriptional Profiles through ARMA(p,q)
    Li, Ning
    McMurry, Timothy
    Berg, Arthur
    Wang, Zhong
    Berceli, Scott A.
    Wu, Rongling
    PLOS ONE, 2010, 5 (04):
  • [37] 油松毛虫种群动态的ARMA(p,q)模型
    张素芬
    夏乃斌
    屠泉洪
    北京林业大学学报, 1992, (01) : 93 - 97
  • [38] 基于ARMA(p,q)模型的企业年金精算研究
    师应来
    蔡超
    数量经济技术经济研究, 2008, 25 (11) : 127 - 136+148
  • [39] An Alternative Method for ARMA(p, q) Model Characterization of Multipath Fading Channels
    Mera, Diogo
    Tavares, Goncalo
    Ortigueira, Manuel
    2015 IEEE 81ST VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2015,
  • [40] Rate of Convergence to Normality of Estimators in a Random Coefficient ARMA (p, q) Model
    Sen Roy, Sugata
    Bhattacharya, Sankha
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (06) : 1081 - 1092