Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques

被引:0
|
作者
Zolfagharinia, Hossein [1 ]
Najafi, Mehdi [1 ]
Rizvi, Shamir [1 ]
Haghighi, Aida [2 ]
机构
[1] Toronto Metropolitan Univ, Ted Rogers Sch Management, Global Management Studies Dept, Toronto, ON M5B 2K3, Canada
[2] Toronto Metropolitan Univ, Fac Community Serv, Sch Occupat & Publ Hlth, Toronto, ON M5B 2K3, Canada
关键词
stock-price prediction; neural network; LSTM; multi-layer perceptron; news count; NEURAL-NETWORK; FINANCIAL NEWS; MULTIPLE CLASSIFIERS; HIDDEN LAYERS; HYBRID ARIMA; MARKET; MODEL; INDEX; SUPPORT; SYSTEM;
D O I
10.3390/a17060234
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Price prediction tools play a significant role in small investors' behavior. As such, this study aims to propose a method to more effectively predict stock prices in North America. Chiefly, the study addresses crucial questions related to the relevance of news and tweets in stock-price prediction and highlights the potential value of considering such parameters in algorithmic trading strategies-particularly during times of market panic. To this end, we develop innovative multi-layer perceptron (MLP) and long short-term memory (LSTM) neural networks to investigate the influence of Twitter count (TC), and news count (NC) variables on stock-price prediction under both normal and market-panic conditions. To capture the impact of these variables, we integrate technical variables with TC and NC and evaluate the prediction accuracy across different model types. We use Bloomberg Twitter count and news publication count variables in North American stock-price prediction and integrate them into MLP and LSTM neural networks to evaluate their impact during the market pandemic. The results showcase improved prediction accuracy, promising significant benefits for traders and investors. This strategic integration reflects a nuanced understanding of the market sentiment derived from public opinion on platforms like Twitter.
引用
收藏
页数:29
相关论文
共 50 条
  • [41] Systematic Erudition of Bitcoin Price Prediction using Machine Learning Techniques
    Rane, Prachi Vivek
    Dhage, Sudhir N.
    2019 5TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2019, : 594 - 598
  • [42] Endpoint Temperature Prediction model for LD Converters Using Machine-Learning Techniques
    Jo, Hyeontae
    Hwang, Hyung Ju
    Du Phan
    Lee, Youmin
    Jang, Hyeokjae
    2019 IEEE 6TH INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND APPLICATIONS (ICIEA), 2019, : 22 - 26
  • [43] Advancing Financial Forecasts: Stock Price Prediction Based on Time Series and Machine Learning Techniques
    Yang, Cheng-Ying
    Hwang, Min-Shiang
    Tseng, Yu-Wei
    Yang, Chou-Chen
    Shen, Victor R. L.
    APPLIED ARTIFICIAL INTELLIGENCE, 2024, 38 (01)
  • [44] DVFS Binning Using Machine-Learning Techniques
    Chang, Keng-Wei
    Huang, Chun-Yang
    Mu, Szu-Pang
    Huang, Jian-Min
    Chen, Shi-Hao
    Chao, Mango C-T
    2018 IEEE INTERNATIONAL TEST CONFERENCE IN ASIA (ITC-ASIA 2018), 2018, : 31 - 36
  • [45] Stock price prediction using reinforcement learning
    Lee, JW
    ISIE 2001: IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS PROCEEDINGS, VOLS I-III, 2001, : 690 - 695
  • [46] A Proposal of a Method to Determine the Appropriate Learning Period in Stock Price Prediction Using Machine Learning
    Shirata, Ryuya
    Harada, Taku
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (05) : 726 - 732
  • [47] Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models
    Chatterjee, Ananda
    Bhowmick, Hrisav
    Sen, Jaydip
    2021 IEEE Mysore Sub Section International Conference, MysuruCon 2021, 2021, : 289 - 296
  • [48] Stock price prediction using DEEP learning algorithm and its comparison with machine learning algorithms
    Nikou, Mahla
    Mansourfar, Gholamreza
    Bagherzadeh, Jamshid
    INTELLIGENT SYSTEMS IN ACCOUNTING FINANCE & MANAGEMENT, 2019, 26 (04): : 164 - 174
  • [49] Stock price prediction using time series, econometric, machine learning, and deep learning models
    Chatterjee, Ananda
    Bhowmick, Hrisav
    Sen, Jaydip
    arXiv, 2021,
  • [50] Using Financial News Sentiment for Stock Price Direction Prediction
    Fazlija, Bledar
    Harder, Pedro
    MATHEMATICS, 2022, 10 (13)