A data-driven approach to mapping multidimensional poverty at residential block level in Mexico

被引:0
|
作者
Zea-Ortiz, Marivel [1 ]
Vera, Pablo [1 ]
Salas, Joaquin [1 ,4 ]
Manduchi, Roberto [3 ]
Villasenor, Elio [1 ]
Figueroa, Alejandra [2 ]
Suarez, Ranyart R. [2 ]
机构
[1] Inst Politecn Nacl, CICATA Queretaro, Cerro Blanco 141, Santiago de Queretaro 76090, Queretaro, Mexico
[2] Inst Nacl Geog & Estadist, Lab Ciencia Datos & Metodos Modernos Prod Informac, Heroe Nacozari 2301, Aguascalientes 20276, Aguascalientes, Mexico
[3] Univ Calif Santa Cruz, Dept Comp Sci & Engn, 1156 High St, Santa Cruz, CA 95064 USA
[4] MIT, Earth Signals & Syst Grp, Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Human poverty assessment; Sustainable development goals; Computational intelligence for sustainability; SATELLITE;
D O I
10.1007/s10668-024-05230-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, inexpensive and granular human poverty assessments are critical for data-driven policy decision-making. This research proposes a novel approach to computing poverty scores utilizing multispectral satellite images and indices calculated from census reference values. We show how this approach can leverage standard and sparse survey-based multidimensional poverty assessments at the municipal level to develop a deep learning architecture to obtain poverty scores at the residential block level. This method has the distinctive feature that the obtained inference corresponds to Multidimensional Measurement of Poverty generated by CONEVAL, the Mexican agency responsible for measuring poverty. We provide a reliable alternative to survey-based approaches with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.802 +/- 0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.802\pm 0.022$$\end{document} for the lack of housing quality and spaces dimension. A convolutional neural network trained on multispectral satellite images and the lack of housing quality and spaces dimension, which is regressed from census reference variables corresponding to lack of water, electricity, sewage, concrete floor, toilet and occupancy level obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.753. These results represent a significant step forward in including machine learning techniques to provide reliable information at reduced costs and a higher spatiotemporal frequency than traditional person-to-person surveys.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] The contribution of data-driven poverty alleviation funds in achieving mid-21st-Century multidimensional poverty alleviation planning
    Yang, Di
    Luan, Weixin
    Yang, Jun
    Xue, Bing
    Zhang, Xiaoling
    Wang, Hui
    Pian, Feng
    HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS, 2022, 9 (01):
  • [22] The contribution of data-driven poverty alleviation funds in achieving mid-21st-Century multidimensional poverty alleviation planning
    Di Yang
    Weixin Luan
    Jun Yang
    Bing Xue
    Xiaoling Zhang
    Hui Wang
    Feng Pian
    Humanities and Social Sciences Communications, 9
  • [23] A Data-Driven Approach for Providing Frequency Regulation with Aggregated Residential HVAC Units
    Abbas, Akintonde
    Chowdhury, Badrul
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [24] Data-driven approach to prediction of residential energy consumption at urban scales in London
    Gassar, Abdo Abdullah Ahmed
    Yun, Geun Young
    Kim, Sumin
    ENERGY, 2019, 187
  • [25] Data-driven Decarbonization of Residential Heating Systems
    Wamburu, John
    Bashir, Noman
    Irwin, David
    Shenoy, Prashant
    PROCEEDINGS OF THE 2022 THE 9TH ACM INTERNATIONAL CONFERENCE ON SYSTEMS FOR ENERGY-EFFICIENT BUILDINGS, CITIES, AND TRANSPORTATION, BUILDSYS 2022, 2022, : 49 - 58
  • [26] A Data-Driven Approach for Real-Time Residential EV Charging Management
    Wan, Zhiqiang
    Li, Hepeng
    He, Haibo
    Prokhorov, Danil
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [27] A multidimensional understanding of prosperity and well-being at country level: Data-driven explorations
    Joshanloo, Mohsen
    Jovanovic, Veljko
    Taylor, Tim
    PLOS ONE, 2019, 14 (10):
  • [28] Schedule-level optimization of flight block times for improved airline schedule planning: A data-driven approach
    Abdelghany, Ahmed
    Abdelghany, Khaled
    Guzhva, Vitaly S.
    JOURNAL OF AIR TRANSPORT MANAGEMENT, 2024, 115
  • [29] Mapping the Literature on Nutritional Interventions in Cognitive Health: A Data-Driven Approach
    Walsh, Erin I.
    Cherbuin, Nicolas
    NUTRIENTS, 2019, 11 (01):
  • [30] A data-driven paradigm for mapping problems
    Zhang, Peng
    Liu, Ling
    Deng, Yuefan
    PARALLEL COMPUTING, 2015, 48 : 108 - 124