A data-driven approach to mapping multidimensional poverty at residential block level in Mexico

被引:0
|
作者
Zea-Ortiz, Marivel [1 ]
Vera, Pablo [1 ]
Salas, Joaquin [1 ,4 ]
Manduchi, Roberto [3 ]
Villasenor, Elio [1 ]
Figueroa, Alejandra [2 ]
Suarez, Ranyart R. [2 ]
机构
[1] Inst Politecn Nacl, CICATA Queretaro, Cerro Blanco 141, Santiago de Queretaro 76090, Queretaro, Mexico
[2] Inst Nacl Geog & Estadist, Lab Ciencia Datos & Metodos Modernos Prod Informac, Heroe Nacozari 2301, Aguascalientes 20276, Aguascalientes, Mexico
[3] Univ Calif Santa Cruz, Dept Comp Sci & Engn, 1156 High St, Santa Cruz, CA 95064 USA
[4] MIT, Earth Signals & Syst Grp, Earth Atmospher & Planetary Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
Human poverty assessment; Sustainable development goals; Computational intelligence for sustainability; SATELLITE;
D O I
10.1007/s10668-024-05230-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Accurate, inexpensive and granular human poverty assessments are critical for data-driven policy decision-making. This research proposes a novel approach to computing poverty scores utilizing multispectral satellite images and indices calculated from census reference values. We show how this approach can leverage standard and sparse survey-based multidimensional poverty assessments at the municipal level to develop a deep learning architecture to obtain poverty scores at the residential block level. This method has the distinctive feature that the obtained inference corresponds to Multidimensional Measurement of Poverty generated by CONEVAL, the Mexican agency responsible for measuring poverty. We provide a reliable alternative to survey-based approaches with an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.802 +/- 0.022\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.802\pm 0.022$$\end{document} for the lack of housing quality and spaces dimension. A convolutional neural network trained on multispectral satellite images and the lack of housing quality and spaces dimension, which is regressed from census reference variables corresponding to lack of water, electricity, sewage, concrete floor, toilet and occupancy level obtains an R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R<^>2$$\end{document} of 0.753. These results represent a significant step forward in including machine learning techniques to provide reliable information at reduced costs and a higher spatiotemporal frequency than traditional person-to-person surveys.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] A Data-Driven, Multidimensional Approach to Hint Design in Video Games
    Wauck, Helen
    Fu, Wai-Tat
    IUI'17: PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES, 2017, : 137 - 147
  • [2] A data-driven approach to grocery store block layout
    Ozgormus, Elif
    Smith, Alice E.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2020, 139
  • [3] A DATA-DRIVEN BLOCK THRESHOLDING APPROACH TO WAVELET ESTIMATION
    Cai, T. Tony
    Zhou, Harrison H.
    ANNALS OF STATISTICS, 2009, 37 (02): : 569 - 595
  • [4] A Data-Driven Approach for Detection and Estimation of Residential PV Installations
    Zhang, Xiaochen
    Grijalva, Santiago
    IEEE TRANSACTIONS ON SMART GRID, 2016, 7 (05) : 2477 - 2485
  • [5] Effect of Climate on Residential Electricity Consumption: A Data-Driven Approach
    Xia, Cuihui
    Yao, Tandong
    Wang, Weicai
    Hu, Wentao
    ENERGIES, 2022, 15 (09)
  • [6] Estimating the benefits of cooperation in a residential microgrid: A data-driven approach
    Rieger, Alexander
    Thummert, Robert
    Fridgen, Gilbert
    Kahlen, Micha
    Ketter, Wolfgang
    APPLIED ENERGY, 2016, 180 : 130 - 141
  • [7] A Spatial Data-Driven Approach for Mineral Prospectivity Mapping
    Senanayake, Indishe P.
    Kiem, Anthony S.
    Hancock, Gregory R.
    Metelka, Vaclav
    Folkes, Chris B.
    Blevin, Phillip L.
    Budd, Anthony R.
    REMOTE SENSING, 2023, 15 (16)
  • [8] Inequality of Opportunity in Mexico and its Regions: A Data-Driven Approach
    Plassot, Thibaut
    Soloaga, Isidro
    Torres, Pedro
    JOURNAL OF DEVELOPMENT STUDIES, 2022, 58 (09): : 1857 - 1873
  • [9] ColorMapND: A Data-Driven Approach and Tool for Mapping Multivariate Data to Color
    Cheng, Shenghui
    Xu, Wei
    Mueller, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2019, 25 (02) : 1361 - 1377
  • [10] A Data-Driven Approach for Targeting Residential Customers for Energy Efficiency Programs
    Liang, Huishi
    Ma, Jin
    Sun, Rongfu
    Du, Yanling
    IEEE TRANSACTIONS ON SMART GRID, 2020, 11 (02) : 1229 - 1238