Optimizing Structural Patterns for 3D Electrodes in Lithium-Ion Batteries for Enhanced Fast-Charging Capability and Reduced Lithium Plating

被引:1
|
作者
Sterzl, Yannic [1 ]
Pfleging, Wilhelm [1 ]
机构
[1] Karlsruhe Inst Technol, Inst Appl Mat Appl Mat Phys IAM AWP, D-76344 Eggenstein Leopoldshafen, Germany
来源
BATTERIES-BASEL | 2024年 / 10卷 / 05期
关键词
lithium-ion battery; lithium plating; fast-charging; 3D battery; structured electrode; ultrafast laser ablation; laser structuring; upscaling; rewetting; electrode architecture; TORTUOSITY; IMPEDANCE; CELLS;
D O I
10.3390/batteries10050160
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The most common pattern types for anode structuring, in particular the line, grid, and hexagonal-arranged hole pattern were evaluated in a comparable setup in full-cells and symmetrical cells. The cells with structured electrodes were compared to reference cells with unstructured anodes of similar areal capacity (4.3 mAh cm-2) and the onset of lithium plating during fast-charging was determined in situ by differential voltage analysis of the voltage relaxation and ex situ by post-mortem analysis. Furthermore, electrochemical impedance spectroscopy measurements on symmetrical cells were used to determine the ionic resistance of structured and unstructured electrodes of similar areal capacity. All cells with structured electrodes showed lower ionic resistances and an onset of lithium plating shifted to higher C-rates compared to cells with unstructured electrodes. The structure patterns with capillary structures, i.e., lines and grids, showed significant reduced lithium plating during fast-charging and a higher rate capability compared to reference cells with unstructured electrodes and cells with hole structured electrodes. The continuous rewetting of the electrode with liquid electrolyte by capillary forces and the reduced ionic resistance of the 3D electrode are identified as key factors in improving overall battery performance. The data of the studied cells were used to calculate the resulting energy and power densities of prospective commercial pouch cells and potential pitfalls in the comparison to cells with unstructured electrodes were identified.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Application of Spectroscopic Techniques in the Development of Fast-Charging Lithium-Ion Batteries
    Cheng, Xin
    Zhao, Jingteng
    Xiao, Huang
    Song, Congying
    Li, Fang
    Li, Guoxing
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (44): : 18678 - 18694
  • [32] Fast-charging of lithium-ion batteries: A review of electrolyte design aspects
    Lei, Sheng
    Zeng, Ziqi
    Cheng, Shijie
    Xie, Jia
    BATTERY ENERGY, 2023, 2 (05):
  • [33] Kinetic Limits of Graphite Anode for Fast-Charging Lithium-Ion Batteries
    Suting Weng
    Gaojing Yang
    Simeng Zhang
    Xiaozhi Liu
    Xiao Zhang
    Zepeng Liu
    Mengyan Cao
    Mehmet Nurullah Ate?
    Yejing Li
    Liquan Chen
    Zhaoxiang Wang
    Xuefeng Wang
    Nano-Micro Letters, 2023, 15 (11) : 526 - 537
  • [34] Analysis of Graphite Materials for Fast-Charging Capabilities in Lithium-Ion Batteries
    Kirner, J.
    Zhang, L.
    Qin, Y.
    Su, X.
    Li, Y.
    Lu, W.
    SELECTED PROCEEDINGS FROM THE 233RD ECS MEETING, 2018, 85 (13): : 33 - 44
  • [35] Reversible lithium plating on working anodes enhances fast charging capability in low-temperature lithium-ion batteries
    Tian, Yu
    Lin, Cheng
    Chen, Xiang
    Yu, Xiao
    Xiong, Rui
    Zhang, Qiang
    ENERGY STORAGE MATERIALS, 2023, 56 : 412 - 423
  • [36] Research and Application of Fast-Charging Graphite Anodes for Lithium-Ion Batteries
    Ding, Xiaobo
    Huang, Qianhui
    Xiong, Xunhui
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
  • [37] The fast-charging properties of micro lithium-ion batteries for smart devices
    Gao, Xianggang
    Zhou, Hao
    Li, Shihao
    Chang, ShiLei
    Lai, Yanqing
    Zhang, Zhian
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 141 - 150
  • [38] Superior fast-charging capability of graphite anode via facile surface treatment for lithium-ion batteries
    Kim, Jisu
    Jeghan, Shrine Maria Nithya
    Lee, Gibaek
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 305 (305)
  • [39] Effect of Anode Porosity and Temperature on the Performance and Lithium Plating During Fast-Charging of Lithium-Ion Cells
    Robertson, David C.
    Flores, LeRoy
    Dunlop, Alison R.
    Trask, Stephen E.
    Usseglio-Viretta, Francois L. E.
    Colclasure, Andrew M.
    Yang, Zhenzhen
    Bloom, Ira
    ENERGY TECHNOLOGY, 2021, 9 (01)
  • [40] Designing Electrolytes With Controlled Solvation Structure for Fast-Charging Lithium-Ion Batteries
    Kautz, David J.
    Cao, Xia
    Gao, Peiyuan
    Matthews, Bethany E.
    Xu, Yaobin
    Han, Kee Sung
    Omenya, Fredrick
    Engelhard, Mark H.
    Jia, Hao
    Wang, Chongmin
    Zhang, Ji-Guang
    Xu, Wu
    ADVANCED ENERGY MATERIALS, 2023, 13 (35)