Fabrication and Characterization of COL/PVA Nanofiber Scaffolds for Soft Tissue Engineering

被引:0
|
作者
Jahanbani, Yalda [1 ,2 ]
Davaran, Soodabeh [1 ]
Yousefi, Mehdi [3 ]
Roshangar, Leila [4 ]
Bastani, Parvin [5 ]
Kadkhoda, Jamileh [1 ]
机构
[1] Tabriz Univ Med Sci, Fac Pharm, Dept Med Chem, Tabriz, Iran
[2] Tabriz Univ Med Sci, Student Res Comm, Tabriz, Iran
[3] Tabriz Univ Med Sci, Sch Med, Dept Immunol, Tabriz, Iran
[4] Tabriz Univ Med Sci, Tabriz, Iran
[5] Tabriz Univ Med Sci, Al Zahra Hosp, Fac Med, Obstet & Gynecol Dept, Tabriz, Iran
来源
CHEMICAL METHODOLOGIES | 2024年 / 8卷 / 05期
关键词
Soft tissue engineering; Electrospinning; Nanofiber scaffolds; COLLAGEN-PVA; STEM-CELLS; CARTILAGE; ALCOHOL;
D O I
10.48309/CHEMM.2024.455838.1794
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Development of new biomaterial-based approaches for regeneration of soft tissues and organs such as heart, brain, uterine, ovarian, and others has received much attention in recent years. Here, we explain the stages of design and development of the biocompatible Collagen/Polyvinyl alcohol (COL/PVA) nanofiber scaffolds to transfer human umbilical cord mesenchymal stem cells (HUC-MSCs) to damaged soft tissue. In this study, by optimizing the percentage ratio of COL to PVA, the need for a cross-linking process to maintain the nanofibers' stability in aqueous environments was eliminated and this strategy significantly increased the biocompatibility of the synthesized nanofibers. The chemical structure of synthesized scaffolds was evaluated by Fourier-transform infrared spectroscopy (FT-IR). In addition, other physicochemical and biological aspects of the fabricated scaffolds, including nanofiber diameter, in vitro degradation, swelling behavior, mechanical properties, morphologies, and biocompatibility were surveyed. Physiochemical assessments showed that un cross linked 60/40 COL/PVA nanofiber scaffolds had a successful performance in terms of morphology and stability. Furthermore, these scaffolds had no toxicity on HUC-MSCs. Therefore, study was continued with the most ideal percentage composition of the prepared nanofiber scaffolds. Scanning electron microscope (SEM) images showed proper cell adhesion and distribution of HUC-MSCs throughout the nanofiber scaffolds.
引用
收藏
页码:386 / 400
页数:15
相关论文
共 50 条
  • [41] Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications
    Sadeghi-Ataabadi, Mahmoud
    Mostafavi-Pour, Zohreh
    Vojdani, Zahra
    Sani, Mahsa
    Latifi, Mona
    Talaei-Khozani, Tahereh
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 71 : 372 - 380
  • [42] Fabrication and Characterization of Three-Dimensional Electrospun Scaffolds for Bone Tissue Engineering
    Andric T.
    Taylor B.L.
    Whittington A.R.
    Freeman J.W.
    Regenerative Engineering and Translational Medicine, 2015, 1 (1-4) : 32 - 41
  • [43] Fabrication and characterization of chitosan-based composite scaffolds for neural tissue engineering
    Cheng, Rong
    Cao, Yanyan
    Yan, Yayun
    Shen, Zhizhong
    Zhao, Yajing
    Zhang, Yixia
    Sang, Shengbo
    Han, Yanqing
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2022, 71 (11) : 831 - 841
  • [44] Fabrication and Characterization of PCL/PLGA Coaxial and Bilayer Fibrous Scaffolds for Tissue Engineering
    Bazgir, Morteza
    Zhang, Wei
    Zhang, Ximu
    Elies, Jacobo
    Saeinasab, Morvarid
    Coates, Phil
    Youseffi, Mansour
    Sefat, Farshid
    MATERIALS, 2021, 14 (21)
  • [45] Fabrication and characterization of scaffolds containing different amounts of allantoin for skin tissue engineering
    Yeganeh Dorri Nokoorani
    Amir Shamloo
    Maedeh Bahadoran
    Hamideh Moravvej
    Scientific Reports, 11
  • [46] Fabrication and characterization of chitosan/gelatin/nanodiopside composite scaffolds for tissue engineering application
    Teimouri, Abbas
    Roohafza, Shahin
    Azadi, Mohammad
    Chermahini, Alireza Najafi
    POLYMER BULLETIN, 2018, 75 (04) : 1487 - 1504
  • [47] FABRICATION AND CHARACTERIZATION OF HIGH INTERCONNECTED HYBRID GELATIN/CHITOSAN SCAFFOLDS FOR TISSUE ENGINEERING
    Pezeshki, M.
    Mizradeh, H.
    Zandi, M.
    Daliri, M.
    Irani, S.
    INTERNATIONAL JOURNAL OF ARTIFICIAL ORGANS, 2010, 33 (07): : 455 - 455
  • [48] Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering
    Adekogbe, I
    Ghanem, A
    BIOMATERIALS, 2005, 26 (35) : 7241 - 7250
  • [49] Design, Fabrication, and Characterization of Novel Porous Conductive Scaffolds for Nerve Tissue Engineering
    Baniasadi, Hossein
    Ramazani, Ahmad S. A.
    Mashayekhan, Shohreh
    Farani, Marzieh Ramezani
    Ghaderinezhad, Fariba
    Dabaghi, Mohammadhossein
    INTERNATIONAL JOURNAL OF POLYMERIC MATERIALS AND POLYMERIC BIOMATERIALS, 2015, 64 (18) : 969 - 977
  • [50] Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering
    Wright, L. D.
    Young, R. T.
    Andric, T.
    Freeman, J. W.
    BIOMEDICAL MATERIALS, 2010, 5 (05)