Stabilizing Nonlinear ODEs With Diffusive Actuator Dynamics

被引:0
|
作者
Irscheid, Abdurrahman [1 ]
Gehring, Nicole [2 ]
Deutscher, Joachim [1 ,3 ]
Rudolph, Joachim
机构
[1] Saarland Univ, Chair Syst Theory & Control Engn, D-66123 Saarbrucken, Germany
[2] Johannes Kepler Univ Linz, Inst Automat Control & Control Syst Technol, A-4040 Linz, Austria
[3] Ulm Univ, Inst Measurement Control & Microtechnol, D-89081 Ulm, Germany
来源
关键词
Backstepping; State feedback; Nonlinear dynamical systems; Kernel; Asymptotic stability; Actuators; Stability criteria; Parabolic systems; nonlinear PDE-ODE systems; state feedback; backstepping; Cauchy problem;
D O I
10.1109/LCSYS.2024.3406924
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents a design of stabilizing controllers for a cascaded system consisting of a boundary actuated parabolic PDE and nonlinear dynamics at the unactuated boundary. Although the considered PDE is linear, the nonlinearity of the ODE constitutes a significant challenge. In order to solve this problem, it is shown that the classical backstepping transformation of Volterra type directly results from the solution of a Cauchy problem. This new perspective enables the derivation of a controller for the nonlinear setup, where a Volterra integral representation does not exist. Specifically, the solution of an appropriate linear Cauchy problem yields a novel state transformation facilitating the design of a stabilizing state feedback. This control law is shown to ensure asymptotic closed-loop stability of the origin. An efficient implementation of the controller is proposed and demonstrated for an example.
引用
收藏
页码:1259 / 1264
页数:6
相关论文
共 50 条
  • [41] Stabilizing Transmission Intervals for Networked Control Systems with Nonlinear Delay Dynamics
    Tolic, Domagoj
    Hirche, Sandra
    2015 54TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2015, : 6196 - 6201
  • [42] Nonlinear dynamics of flame fronts with large-scale stabilizing effects
    Radisson, Basile
    Denet, Bruno
    Almarcha, Christophe
    PHYSICAL REVIEW E, 2021, 103 (06)
  • [43] Event-Triggered Safe Stabilizing Boundary Control for the Stefan PDE System with Actuator Dynamics
    Koga, Shumon
    Demir, Cenk
    Krstic, Miroslav
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 1794 - 1799
  • [44] Melnikov theory for nonlinear implicit ODEs
    Battelli, Flaviano
    Feckan, Michal
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (03) : 1157 - 1190
  • [45] A new nonlinear integration formula for ODEs
    Sivakumar, TR
    Savithri, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 67 (02) : 291 - 299
  • [46] From nonlinear PDEs to singular ODEs
    Budd, C
    Koch, O
    Weinmüller, E
    APPLIED NUMERICAL MATHEMATICS, 2006, 56 (3-4) : 413 - 422
  • [47] NONLINEAR RLC CIRCUITS AND IMPLICIT ODES
    Battelli, Flaviano
    Feckan, Michal
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2014, 27 (7-8) : 671 - 690
  • [48] Global bifurcation for a class of nonlinear ODEs
    Bettiol, Renato G.
    Piccione, Paolo
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2022, 16 (01): : 486 - 507
  • [49] Additive Cascaded Model Identification of Linear and Nonlinear Dynamics of Piezoelectric Actuator
    Qi Chenkun
    Gao Feng
    Zhao Xianchao
    Yue Yi
    Dong Yi
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 2112 - 2117
  • [50] Global bifurcation for a class of nonlinear ODEs
    Renato G. Bettiol
    Paolo Piccione
    São Paulo Journal of Mathematical Sciences, 2022, 16 : 486 - 507